Vol. 134

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-11-26

A Wideband and Dual-Resonant Terahertz Metamaterial Using a Modified SRR Structure

By Wanyi Guo, Lianxing He, Biao Li, Teng Teng, and Xiao-Wei Sun
Progress In Electromagnetics Research, Vol. 134, 289-299, 2013
doi:10.2528/PIER12102315

Abstract

We present the design, fabrication and measurment of a dual-resonant broadband terahertz (THz) matamterial based on a modified split-ring resonator (MSRR) structure. The proposed MSRR is constructed by connecting the inner split ring with the outer split ring of adjacent cell. Transmission and reflection characteristics of the proposed structure are simulated using Ansoft HFSS, and the permittivities show negative values in 0.492-0.693 THz and 0.727-0.811 THz bands. The designed sample is fabricated on a gallium arsenide layer, and experiments are performed in Terahertz Time-Domain Spectroscopy. Measured transmission characteristics agree well with the simulations.

Citation


Wanyi Guo, Lianxing He, Biao Li, Teng Teng, and Xiao-Wei Sun, "A Wideband and Dual-Resonant Terahertz Metamaterial Using a Modified SRR Structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.
doi:10.2528/PIER12102315
http://www.jpier.org/PIER/pier.php?paper=12102315

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Chen, H.-T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
    doi:10.1038/nphoton.2009.3

    3. Han, J., A. Lakhtakia, and C.-W. Qiu, "Terahertz metamaterial with semiconductor split-ring resonators for magnetostatic tenability," Opt. Express, Vol. 16, No. 19, 14390-14396, 2008.
    doi:10.1364/OE.16.014390

    4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
    doi:10.1126/science.1094025

    5. Chen, H.-T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597-600, Nov. 2006.
    doi:10.1038/nature05343

    6. Christian, D. and H. B. Peter, "Frequecncy selective surfaces for high sensitivity terahertz sensing," App. Phys. Lett., Vol. 91, No. 18, 184102(1)-184102(3), Aug. 2007.

    7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    8. Wen, Q.-Y., H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," App. Phys. Lett., Vol. 95, No. 24, 16527-16534, 2009.
    doi:10.1063/1.3276072

    9. Lim, C. S., M. H. Hong, Z. C. Chen, N. R. Han, B. Luk'yanchuk, and T. C. Chong, "Hybrid metamaterial design and fabrication for terahertz resonance response enhancement," Opt. Express, Vol. 18, No. 12, 12421-12429, 2010.
    doi:10.1364/OE.18.012421

    10. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Opt. Express, Vol. 19, No. 8, 6991-6998, 2011.
    doi:10.1364/OE.19.006990

    11. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, No. 13, 9746-9752, 2008.
    doi:10.1364/OE.16.009746

    12. Yuan, Y., C. Bingham, T. Talmage, S. Palit, T. H. Hand, W. J. Padila, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," App. Phys. Lett., Vol. 93, No. 19, 19110(1)-19110(3), 2008.

    13. Ekmekci, E., K. Topalli, T. Akin, and G. Turhan-Sayan, "A tunable mult-band metamaterial design using micro-split SRR structures," Opt. Express, Vol. 17, No. 18, 16406-16058, 2009.
    doi:10.1364/OE.17.016046

    14. Han, J. G., J. Q. Gu, X. C. Lu, M. X. He, Q. R. Xing, and W. L. Zhang, "Broadband resonant terahertz transmission in a composite metal-dielectric structure," Opt. Express, Vol. 17, No. 19, 036617(1)-(11), 2005.

    15. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617(1)-(11), 2005.

    16. Chen, Z. C., N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, "Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates," Opt. Materials Express, Vol. 1, No. 2, 151-157, 2011.
    doi:10.1364/OME.1.000151

    17. Ng, B., S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. E. Liew, N. Klein, M. H. Hong, and S. A. Maier, "Lattice resonances in antenna arrays for liquid sensing in the terahertz regime," Opt. Express, Vol. 19, No. 15, 14653-14661, 2011.
    doi:10.1364/OE.19.014653

    18. Liu, X.-X., D. A. Powell, and A. Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, No. 23, 235106(1)-(7), 2011.