PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 129-147

A NOVEL, HIGH-SPEED IMAGE TRANSMITTER FOR WIRELESS CAPSULE ENDOSCOPY

By M. R. Basar, M. F. B. A. Malek, M. I. M. Saleh, M. S. Idris, K. M. Juni, A. Ali, N. A. Mohd Affendi, and N. Hussin

Full Article PDF (410 KB)

Abstract:
Wireless capsule endoscopy (WCE) was developed as a painless diagnostic tool for endoscopic examination of the gastrointestinal (GI) tract, but, to date, the low operating power of the capsule and the high data rate of the RF telemetry system are still key concerns. Innovative, novel solutions must be developed to address these concerns before WCE can be used extensively in clinical applications. In this paper, we propose a novel RF transmitter for WCE applications that only requires 1.5 V to transmit the required data as opposed to using a DC power supply. Our proposed, direct-conversion transmitter system consists of a current reuse oscillator, an envelope filter, and an L-section matching network. The oscillator is powered by the transmitting data which keep the oscillator in turned on and off for the transmitting 1 and 0 bit respectively and results in the on-off keying (OOK) of the modulated signal at the output of the oscillator. The rate of data transmission at the modulated signal is limited by the transient period of the oscillator start-up. When the start-up time of the oscillator is optimized, an OOK modulation rate of 100 Mb/s can be attained. In order to eliminate the oscillator decay noise, we used an envelope filter connected in series with the oscillator to filter out the decay part of the oscillation. Finally, the output impedance of the envelope filter is matched to the 50-Ω antenna with an L-section, low-pass, matching network to ensure maximum power transmission. The entire transmitter system was simulated in a 0.18-μm Complementary metal-oxide-semiconductor (CMOS) process.

Citation:
M. R. Basar, M. F. B. A. Malek, M. I. M. Saleh, M. S. Idris, K. M. Juni, A. Ali, N. A. Mohd Affendi, and N. Hussin, "A Novel, High-Speed Image Transmitter for Wireless Capsule Endoscopy," Progress In Electromagnetics Research, Vol. 137, 129-147, 2013.
doi:10.2528/PIER13011102
http://www.jpier.org/PIER/pier.php?paper=13011102

References:
1. Iddan, G., G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, Vol. 405, 417, May 2000.
doi:10.1038/35013140

2. Pan, G. and L. Wang, "Swallowable wireless capsule endoscopy: Progress and technical challenges," Gastroenterology Research and Practice, Vol. 2012, 1-9, 2011.
doi:10.1155/2012/841691

3. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: From current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2011.
doi:10.1109/RBME.2011.2171182

4. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low power high data rate wireless endoscopy transceiver," Microelectronics Journal, Vol. 38, 1070-1081, 2007.
doi:10.1016/j.mejo.2007.07.118

5. Chi, B., J. Yao, S. Han, X. Xie, G. Li, and Z. Wang, "Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications," IEEE Transactions on Biomedical Engineering, Vol. 54, 1291-1299, 2007.
doi:10.1109/TBME.2006.889768

6. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, 2009.
doi:10.1109/TCSII.2009.2015369

7. Gao, Y., Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, 768-772, 2011.
doi:10.1109/TBME.2011.2164248

8. Shaban, H. A. and M. A. El-Nasr, "Performance comparison of ED, TR and DTR IR-UWB receivers for combined PAM-PPM modulation in realistic UWB channels," Progress In Electromagnetics Research Letters, Vol. 30, 91-103, 2012.
doi:10.2528/PIERL11120906

9. Wong, S.-K., F. Kung, S. Maisurah, and M. N. B. Osman, "A WiMedia compliant CMOS RF power amplifier for ultra-wideband (UWB) transmitter," Progress In Electromagnetics Research, Vol. 112, 329-347, 2011.

10. Basar, M. R., M. F. B. A. Malek, K. M. Juni, M. I. M. Saleh, M. S. Idris, L. Mohamed, N. Saudin, N. A. Mohd Affendi, and A. Ali, "The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy," Progress In Electromagnetics Research, Vol. 133, 495-513, 2013.

11. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

12. Szczepkowski, G., J. Dooley, and R. Farrell, "The concept of CMOS OOK transmitter using low voltage self-oscillating active inductor," International Conference on Signals and Electronics Systems, 213-216, 2010.

13. Diao, S., Y. Zheng, Y. Gao, C. Heng, and M. Je, "A 7.2-mW, 15-Mbps ASK CMOS transmitter for ingestible capsule endoscopy," IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 512-515, Dec. 6-9, 2010.

14. Kim, K., S. Yun, S. Lee, S. Nam, Y. Yoon, and C. Cheon, "A design of a high-speed and high-efficiency capsule endoscopy system," IEEE Transactions on Biomedical Engineering, Vol. 59, 1005-1010, Apr. 2012.
doi:10.1109/TBME.2011.2182050

15. Anang, K. A., P. B. Rapajic, R. Wu, L. Bello, and T. I. Eneh, "Cellular system information capacity change at higher frequencies due to propagation loss and system parameters," Progress In Electromagnetics Research B, Vol. 44, 191-221, 2012.

16. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.

17. Van Laethem, B., F. Quitin, F. Bellens, C. Oestges, and P. De Doncker, "Correlation for multi-frequency propagation in urban environments," Progress In Electromagnetics Research Letters, Vol. 29, 151-156, 2012.
doi:10.2528/PIERL11111701

18. Ibrani, M., L. Ahma, E. Hamiti, and J. Haxhibeqiri, "Derivation of electromagnetic properties of child biological tissues at radio frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011.

19. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.

20. Theilmann, P., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

21. Izdebski, P. M., H. Rajagopalan, and Y. Rahmat-Samii, "Conformal ingestible capsule antenna: A novel chandelier meandered design," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 900-909, Apr. 2009.
doi:10.1109/TAP.2009.2014598

22. Kwak, K. S., S. Ullah, and N. Ullah, "An overview of IEEE 802.15.6 standard," 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 1-6, Nov. 7-10, 2010.

23. Chirwa, L., C. P. A. Hammond, S. Roy, and D. R. S. Cumming, "Electromagnetic radiation from ingested sources in the human intestine between 150MHz and 1.2 GHz," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 4, 484-492, Apr. 2003.
doi:10.1109/TBME.2003.809474

24. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515

25. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

26. Vrbova, B. and J. Vrba, "Microwave thermotherapy in cancer treatment: Evaluation of homogeneity of SAR distribution," Progress In Electromagnetics Research, Vol. 129, 181-195, 2012.

27. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

28. Aguirre, E., J. Arpon, L. Azpilicueta, S. De Miguel Bilbao, V. Ramos, and F. J. Falcone, "Evaluation of electromagnetic dosimetry of wireless systems in complex indoor scenarios with human body interaction," Progress In Electromagnetics Research B, Vol. 43, 189-209, 2012.

29. Ronald, S. H., M. F. B. A. Malek, S. H. Idris, E. M. Cheng, M. H. Mat, M. S. Zulkefli, and S. F. Binti Maharimi, "Designing asian-sized hand model for SAR determination at GSM900/1800: Simulation part," Progress In Electromagnetics Research, Vol. 129, 439-467, 2012.

30. Kwon, Y., S. Park, T. Park, K. Cho, and H. Lee, "An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, 324-336, Feb. 2012.

31. Basar, M. R., F. Malek, K. M. Juni, M. I. M. Saleh, and M. Shaharom Idris, "A low power 2.4-GHz current reuse VCO for low power miniaturized transceiver system," IEEE International Conference on Electronic Design, Systems and Applications, 215-218, 2012.

32. Rogers, J. W. M. and C. Plett, Radio Frequency Integrated Circuit Design, 2nd Edition, Artech House, Boston, London, 2010.

33. Fong, N., C. Plett, G. Tarr, J.-O. Plouchart, D. Liu, N. Zamdmer, and L. Wagner, "Phase noise improvement of deep submicron low voltage VCO," Proceedings of the 28th European Solid-State Circuits Conference, 811-814, Sep. 24-26, 2002.

34. Kim, J. H. and M. M. Green, "Fast startup of LC VCOs using circuit asymmetries," 20th European Conference on Circuit Theory and Design, 2011.

35. Diao, S., Y. Zheng, and C. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN application," IEEE Trans. on Circuits and Systems - II, Vol. 56, 200-204, Mar. 2009.
doi:10.1109/TCSII.2009.2015369

36. Barras, D., F. Ellinger, H. Jackel, and W. Hirt, "Low-power ultra-wideband wavelets generator with fast start-up circuit," IEEE Trans. on Microwave Theory and Technique, Vol. 54, 2138-2145, May 2006.
doi:10.1109/TMTT.2006.873631

37. Barras, D., F. Ellinger, H. Jackel, and W. Hirt, "Low-power ultra-wideband wavelets generator with fast start-up circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 2138-2145, May 2006.
doi:10.1109/TMTT.2006.873631

38. Diao, S., Y. Zheng, and C.-H. Heng, "A CMOS ultra low-power and highly efficient UWB-IR transmitter for WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 56, 200-204, Mar. 2009.

39. Everitt, W. L. and G. E. Anner, Communication Engineering, 3rd Edition, McGraw-Hill, New York, 1956.

40. Han, Y. and D. J. Perreault, "Analysis and design of high efficiency matching networks," IEEE Transactions on Power Electronics, Vol. 21, 1484-1491, Sep. 2006.
doi:10.1109/TPEL.2006.882083

41. Misra, D. K., Radio-frequency and Microwave Communication Circuits, John Wiley & Sons, Inc., 2004.


© Copyright 2014 EMW Publishing. All Rights Reserved