PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 255-274

A COST-EFFECTIVE METHOD FOR HIGH-QUALITY 60 GHZ OPTICAL MILLIMETER WAVE SIGNAL GENERATION BASED ON FREQUENCY QUADRUPLING

By N. A. Al-Shareefi, S. I. S. Hassan, M. F. B. A. Malek, R. Ngah, S. A. Abbas, and S. A. Aljunid

Full Article PDF (536 KB)

Abstract:
In this paper, we presents a cost effective method to generate a high-quality quadruple frequency optical millimeter-wave (MMW) signal using an integrated dual-parallel MachZehnder modulator (IDP-MZM). Not only does the method minimize the complication of the central station (CS) and its frequency demand for the devices, but the generated optical MMW signal as well has good transmission performance. By properly adjusting the direct current (DC) bias, modulation index, and using two radio frequency (RF) driving signals with 135° phase delay, a high quality dual tone optical MMW at 60 GHz is generated from a 15 GHz RF local oscillator (LO) with optical sideband suppression ratio (OSSR) as high as 32 dB and radio frequency spurious suppression ratio (RFSSR) exceeding 33 dB without optical filter when an integrated IDP-MZM with 30 dB extinction ratio is utilized. Furthermore, the influences of a number of non-ideal parameters, such as the impact of imperfect extinction ratio, non-ideal RF driven voltage and phase difference of RF-driven signals applied to two sub-MZMs of the integrated DP-MZM, on OSSR are studied through Simulation. Finally, we build a Radio over fiber (RoF) system through simulation, and the transmission performance of the generated optical MMW signal is presented. The eye patterns still clear and keeps open even after 60 km transmission.

Citation:
N. A. Al-Shareefi, S. I. S. Hassan, M. F. B. A. Malek, R. Ngah, S. A. Abbas, and S. A. Aljunid, "A Cost-Effective Method for High-Quality 60 GHz Optical Millimeter Wave Signal Generation Based on Frequency Quadrupling," Progress In Electromagnetics Research, Vol. 137, 255-274, 2013.
doi:10.2528/PIER13011307
http://www.jpier.org/PIER/pier.php?paper=13011307

References:
1. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.

2. Huang, T.-Y. and T.-J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60GHZ wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.
doi:10.2528/PIERM11080109

3. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012.

4. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetic Research,, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105

5. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011.

6. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012.

7. Ogawa, H. and D. Polifko, "Fiber optic millimeter-wave subcarrier transmission links for personal radio communication systems," IEEE MTT-S International Microwave Symposium Digest, 555-558, 1992.

8. Lu, H.-H., C.-Y. Li, C.-H. Lee, Y.-C. Hsiao, and H.-W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and - 1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604

9. Chun, T., Lin, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photonics Technology Letters, Vol. 20, No. 12, 1027-1029, 2008.
doi:10.1109/LPT.2008.923739

10. Kotb, H. E., M. Y. Shalaby, and M. H. Ahmed, "Generation of nanosecond optical pulses with controlled repetition rate using incavity intensity modulated brillouin erbium fiber laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011.

11. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.

12. Jia, Z., et al., "Key enabling technologies for optical wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201

13. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

14. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011.

15. Park, C., C. G. Lee, and C. S. Park, "Photonic frequency Up conversion by SBS-based frequency tripling," Journal of Lightwave Technology, Vol. 25, No. 7, 1711-1718, 2007.
doi:10.1109/JLT.2007.897749

16. Wang, Q., H. Rideout, F. Zeng, and J. Yao, "Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2460-2462, 2006.
doi:10.1109/LPT.2006.886826

17. Yu, J., Z. Jia, L. Yi, Y. Su, G. K. Chang, T. and Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, Vol. 18, No. 1, 265-267, 2006.
doi:10.1109/LPT.2005.862006

18. Liu, J., L. Zhang, S.-H. Fan, C. Guo, S. He, and G.-K. Chang, "A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701

19. Shi, P., et al., "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Optical Fiber Technology, Vol. 17, 236-241, 2011.
doi:10.1016/j.yofte.2011.02.007

20. Zhang, J., H. Chen, M. Chen, T. Wang, and S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photonics Technology Letters, Vol. 19, No. 14, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462

21. Deng, L., D. Liu, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/S 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress In Electromagnetics Research, Vol. 126, 449-461, 2012.
doi:10.2528/PIER12013006

22. Qi, G., J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," Journal of Lightwave Technology, Vol. 23, No. 9, 2687-2695, 2005.
doi:10.1109/JLT.2005.854067

23. Shi, P., et al., "A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator," Optics Communications, Vol. 283, No. 19, 3667-3672, 2010.
doi:10.1016/j.optcom.2010.05.021

24. Al-Shareefi, N. A., S. H. Idris, M. F. B. A. Malek, R. Ngah, S. A. Aljunid, R. A. Fayadh, J. Adhab, and H. A. Rahim, "Development of a new approach for high-quality quadrupling frequency optical millimeter-wave signal generation without optical filter," Progress In Electromagnetics Research, Vol. 134, 189-208, 2012.

25. Chen, L., H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photonics Technology Letters, Vol. 18, No. 19, 2056-2058, 2006.
doi:10.1109/LPT.2006.883293

26. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907

27. He, J., L. Chen, Z. Dong, S. Wen, and J. Yu, "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Optical Fiber Technology, Vol. 15, No. 3, 290-295, 2009.
doi:10.1016/j.yofte.2008.12.006

28. Liu, X., et al., "Frequency quadrupling using an integrated Mach-Zehnder modulator with four arms," Optics Communications, Vol. 284, 4052-4058, 2011.
doi:10.1016/j.optcom.2011.04.008

29. Zhao, Y., et al., "Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators," Optics Letters, Vol. 34, 3250-3252, 2009.
doi:10.1364/OL.34.003250

30. Ma, J., et al., "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation," Journal of Lightwave Technology, Vol. 25, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794


© Copyright 2014 EMW Publishing. All Rights Reserved