Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 527-538


By M. Dalarsson, M. K. Norgren, T. Asenov, and N. S. Doncov

Full Article PDF (367 KB)

We investigate the wave propagation properties in lossy structures with graded permittivity and permeability involving left-handed metamaterials. An exact analytic solution to Helmholtz' equation for a lossy case with both real and imaginary parts of permittivity and permeability profile, changing according to a hyperbolic tangent function along the direction of propagation, is obtained. It allows for different loss factors in RHM and LHM media. Thereafter, the corresponding numerical solution for the field intensity along the composite structure is obtained by means of a dispersive numerical model of lossy metamaterials that uses a transmission line matrix method based on Z-transforms. We present the expressions and graphical results for the field intensity along the composite structure and compare the analytic and numerical solutions, showing that there is an excellent agreement between them.

M. Dalarsson, M. K. Norgren, T. Asenov, and N. S. Doncov, "Arbitrary Loss Factors in the Wave Propagation Between Rhm and Lhm Media with Constant Impedance Throughout the Structure," Progress In Electromagnetics Research, Vol. 137, 527-538, 2013.

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Mat., Vol. 10, No. 22, 4785-4809, 1998.

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.

4. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, F. Martiacute, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.

5. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.

6. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 1-4, 2005.

7. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.

8. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

10. Xiao, S., U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and , "Yellow-light negative-index metamaterials," Opt. Lett., Vol. 34, 3478-3480, 2009.

11. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, Dordrecht, 2009.

12. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials, SPIE Press Bellingham, WA & CRC Press, Taylor & Francis Group, Boca Raton, FL, 2009.

13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

14. Fang, N., H. Lee, C. Sun, and X. Zhang, "Subdiffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.

15. Engheta, N., "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Anten. Wirel. Propag. Lett., Vol. 1, 10-13, 2002.

16. Zhu, W., I. Rukhlenko, and M. Premaratne, "Linear transfor-mation optics for plasmonics," Journal of the Optical Society of America B: Optical Physics, Vol. 29, No. 10, 2659-2664, 2012.

17. Novitsky, A. V., S. V. Zhukovsky, L. M. Barkovsky, and A. V. Lavrinenko, "Field approach in the transformation optics concept," Progress In Electromagnetics Research, Vol. 129, 485-515, 2012.

18. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagneticwaves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.

19. Zhu, W., I. D. Rukhlenko, and M. Premaratne, "Manipulating energy flow in variable-gap plasmonic waveguides," Opt. Lett., Vol. 37, No. 24, 5151-5153, 2012.

20. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.

21. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.

22. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, 2010.

23. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, No. 8, 8247-8256, 2006.

24. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007.

25. Fung, T. H., L. L. Leung, J. J. Xiao, and K. W. Yu, "Controlling electric fields spatially by graded metamaterials: Implication on enhanced nonlinear optical responses," Opt. Commun., Vol. 282, 1028-1031, 2009.

26. Ramakrishna, S. A. and J. B. Pendry, "Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry," Phys. Rev. B, Vol. 69, 115115, 2004.

27. Smith, D. R., J. J. Mock, A. F. Starr, and D. Schurig, "A gradient index metamaterial," Phys. Rev. E, Vol. 71, 036609, 2005.

28. Pinchuk, A. O. and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A, Vol. 24, A39-A44, 2007.

29. Litchinitser, N. M., N. M., A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, "Metamaterials: Electromagnetic enhancement at zero-index transition," Opt. Lett., Vol. 33, 2350-2352, 2008.

30. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Opt. Express, Vol. 17, No. 8, 6747-6752, 2009.

31. Dalarsson, M., Z. Jaksic, and P. Tassin, "Exact analytical solution for oblique incidence on a graded index interface between a right-handed and a left-handed material," J. Optoel. Biomed. Mat., Vol. 1, 345-352, 2009.

32. Dalarsson, M., Z. Jaksic, and P. Tassin, "Structures containing left-handed metamaterials with refractive index gradient: Exact analytical versus numerical treatment," Microwave Rev., Vol. 15, 1-5, 2009.

33. Dalarsson, M., M. Norgren, and Z. Jak·sic, "Lossy gradient index metamaterial with sinusoidal periodicity of refractive index: Case of constant impedance throughout the structure," J. Nanophoton., Vol. 5, 051804, 2011.

34. Dalarsson, M., M. Norgren, and Z. Jaksic, "Lossy wave propagation through a graded interface to a negative index material case of constant impedance," Microwave Rev., Vol. 17, 1-6, 2011.

35. Doncov, N., B. Milovanovic, T. Asenov, and J. Paul, "TLM modelling of left-handed metamaterials by using digital filtering techniques," Microwave Rev., Vol. 16, 2-7, 2010.

36. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM. Part I: Materials with frequency dependent properties," IEEE Trans. Antennas and Propag., Vol. 47, No. 10, 1528-1534, 1999.

37. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM. Part II: Materials with anisotropic properties," IEEE Trans. Antennas and Propag., Vol. 47, No. 10, 1535-1542, 1999.

© Copyright 2014 EMW Publishing. All Rights Reserved