PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 147-167

THE IMPROVEMENT OF ARRAY ANTENNA PERFORMANCE WITH THE IMPLEMENTATION OF AN ARTIFICIAL MAGNETIC CONDUCTOR (AMC) GROUND PLANE AND IN-PHASE SUPERSTRATE

By R. Dewan, S. K. B. A. Rahim, S. F. Ausordin, and T. Purnamirza

Full Article PDF (1,215 KB)

Abstract:
This paper discusses performance improvement with the integration of an artificial magnetic conductor (AMC) into array antennas. An AMC with defected ground structure (DGS) was designed to construct the AMC ground plane and in-phase superstrate. The two distinguishable structures were integrated into an array antenna, which serves as a reference antenna at 5.8 GHz. The impedance bandwidth (BW) of the reference antenna significantly improved to 287% when integrated with an AMC ground plane and with 37% reduced size. On the other hand, the integration of in-phase superstrate effectively enhances the gain and BW of the reference antenna by 1 dBi and 44%, respectively. The effects of air gaps on the reference antenna with both the AMC ground plane and in-phase superstrate are discussed. The antenna performance factors, such as return loss and radiation pattern, are also discussed for the reference antenna, the reference antenna with the AMC ground plane, and the reference antenna with in-phase superstrate, respectively. There is satisfactorily good agreement between the simulation and measurement results. The proposed antenna is useful in WLAN (5.15-5.35 GHz and 5.725-5.825 GHz) and WiMAX (5.725-5.825 GHz) applications.

Citation:
R. Dewan, S. K. B. A. Rahim, S. F. Ausordin, and T. Purnamirza, "The Improvement of Array Antenna Performance with the Implementation of an Artificial Magnetic Conductor (AMC) Ground Plane and in-Phase Superstrate," Progress In Electromagnetics Research, Vol. 140, 147-167, 2013.
doi:10.2528/PIER13040206
http://www.jpier.org/PIER/pier.php?paper=13040206

References:
1. Chen, X., J. Chen, C. Liu, and K. Huang, "A genetic metamaterial and its application to gain improvement of a patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1977-1985, 2012.
doi:10.1080/09205071.2012.723674

2. Deng, J. Y., L. X. Guo, and J. H. Yang, "Narrow band notches for ultra-wideband antenna using electromagnetic band-gap structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2320-2327, 2011.
doi:10.1163/156939311798806211

3. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

4. Zhang, F., V. Sadaune, L. Kang, Q. Zhao, J. Zhou, and D. Lippens, "Coupling effect for dielectric metamaterial dimer," Progress In Electromagnetics Research, Vol. 132, 587-601, 2012.

5. Yan, S. and G. A. E. Vandenbosch, "Increasing the NRI bandwidth of dielectric sphere-based metamaterials by coating," Progress In Electromagnetics Research, Vol. 132, 1-23, 2012.

6. Zhang, Y., B. Z.Wang, W. Shao, W. Yu, and R. Mittra, "Artificial ground planes for performance enhancement of microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 597-606, 2011.
doi:10.1163/156939311794500269

7. Costa, F. and A. Monorchio, "Multiband electromagnetic wave absorber based on reactive impedance ground planes," IET Microwaves, Antennas & Propagation, Vol. 4, 1720-1727, 2010.
doi:10.1049/iet-map.2009.0359

8. Li, L., S. Lei, and C. H. Liang, "Ultra-low profile high-gain Fabry-Perot resonant antennas with fishnet superstrate," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-6, 806-816, 2012.
doi:10.1080/09205071.2012.710809

9. Li, Y. and K. P. Esselle, "Small EBG resonator high-gain antenna using in-phase highly-reflecting surface," Electronics Letters, Vol. 45, 1058-1060, 2009.
doi:10.1049/el.2009.0959

10. Guo, W., L. He, B. Li, T. Teng, and X. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2012.

11. Segovia-Vargas, D., F. J. Herraiz-Martínez, E. Ugarte-Muñz, L. E. García-Muñoz, and V. González-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading," Progress In Elec- tromagnetics Research, Vol. 133, 91-115, 2012.

12. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.

13. Tiang, J. J., M. T. Islam, N. Misran, and J. S. Mandeep, "Circular microstrip slot antenna for dual-frequency RFID application," Progress In Electromagnetics Research, Vol. 120, 499-512, 2011.

14. Foroozesh, A. and L. Shafai, "Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement," Canadian Journal of Electrical and Computer Engineering, Vol. 33, 87-98, 2008.
doi:10.1109/CJECE.2008.4621833

15. Dewan, R., S. K. A. Rahim, S. F. Ausordin, H. U. Iddi, and M. Z. Z. A. Aziz, X-polarization array antenna with parallel feeding for WiMAX 3.55 GHz application, IEEE International RF and Microwave Conference, 368-372, 2011.

16. Kordalivand, A. M. and T. A. Rahman, "Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013.

17. Mohamadi Monavar, F. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

18. Gujral, M., J. L. W. Li, T. Yuan, and C. W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

19. Gebril, K. K., S. K. A. Rahim, and A. Y. Abdulrahman, "Bandwidth enhancement and miniaturization of dielectric resonator an- tenna for 5.8 GHz WLAN," Progress In Electromagnetics Research C, Vol. 19, 179-189, 2011.

20. Jeong, G.-T., W.-S. Kim, and K.-S. Kwak, "Dual-band Wi-Fi antenna with a ground stub for bandwidth enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1036-1039, 2012.
doi:10.1109/LAWP.2012.2214755

21. Wei, K. P., Z. J. Zhang, and Z. H. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 128, 101-120, 2012.
doi:10.2528/PIER11112101

22. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwaves, Antennas & Propagation, Vol. 5, 711-717, 2011.
doi:10.1049/iet-map.2010.0200

23. De Cos, M. E., Y. Ávarez, R. Hadarig, and F. Las-Heras, "Flexible uniplanar artificial magnetic conductor," Progress In Electromagnetics Research, Vol. 106, 349-362, 2010.
doi:10.2528/PIER10061505

24. De Cos, M. E., Y. Ávarez, and F. Las-Heras, "Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC," Microwave and Optical Technology Letters, Vol. 53, 1372-1377, 2011.
doi:10.1002/mop.25974


© Copyright 2014 EMW Publishing. All Rights Reserved