PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 313-325

NANOPARTICLES WITH AGGREGATION-INDUCED EMISSION FOR MONITORING LONG TIME CELL MEMBRANE INTERACTIONS

By H. Cheng, W. Qin, Z. F. Zhu, J. Qian, A. Qin, B. Z. Tang, and S. He

Full Article PDF (496 KB)

Abstract:
We perform the long time monitoring of nanoparticle-cell membrane interaction with high spatial and temporal resolution. The 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN) is doped in organically modified silica (ORMOSIL) to be a biocompatible nanoprobe, which displays an aggregation-induced emission (AIE) effect. Photobleaching resistance of this synthesized nanoparticle is tested and compared with its similar counterpart, which proves its superiority and capability of long term fluorescence emission. We utilize the objective-based total internal reflection microscopy combined with the living cell incubation platform to investigate the cell uptake process of this nanoparticle in real time.

Citation:
H. Cheng, W. Qin, Z. F. Zhu, J. Qian, A. Qin, B. Z. Tang, and S. He, "Nanoparticles with Aggregation-Induced Emission for Monitoring Long Time Cell Membrane Interactions," Progress In Electromagnetics Research, Vol. 140, 313-325, 2013.
doi:10.2528/PIER13040212
http://www.jpier.org/PIER/pier.php?paper=13040212

References:
1. Birks, J. B., Photophysics of Aromatic Molecules, 1970.

2. Qin, W., D. Ding, J. Z. Liu, W. Z. Yuan, Y. Hu, B. Liu, and B. Z. Tang, "Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications," Adv. Funct. Mater., Vol. 22, No. 4, 771-779, 2012.
doi:10.1002/adfm.201102191

3. Yuan, W. Z., P. Lu, S. M. Chen, J. W. Y. Lam, Z. M. Wang, Y. Liu, H. S. Kwok, Y. G. Ma, and B. Z. Tang, "Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: Development of highly efficient light emitters in the solid state," Adv. Mater., Vol. 22, No. 19, 2159, 2010.
doi:10.1002/adma.200904056

4. Luo, J. D., Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, and B. Z. Tang, "Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole," Chem. Commun., Vol. 18, 1740-1741, 2001.
doi:10.1039/b105159h

5. Hong, Y. N., J. W. Y. Lam, and B. Z. Tang, "Aggregation-induced emission: Phenomenon, mechanism and applications," Chem. Commun., Vol. 29, 4332-4353, 2009.
doi:10.1039/b904665h

6. Yu, Y., Y. N. Hong, C. Feng, J. Z. Liu, J. W. Y. Lam, M. T. Faisal, K. M. Ng, K. Q. Luo, and B. Z. Tang, "Synthesis of an AIE-active fluorogen and its application in cell imaging," Sci. China Ser. B, Vol. 52, No. 1, 15-19, 2009.
doi:10.1007/s11426-009-0008-0

7. Axelrod, D., "Total internal reflection fluorescence microscopy in cell biology," Traffic, Vol. 2, No. 11, 764-774, 2001.
doi:10.1034/j.1600-0854.2001.21104.x

8. Jaiswal, J. K. and S. M. Simon, "Imaging single events at the cell membrane," Nat. Chem. Biol., Vol. 3, No. 2, 92-98, 2007.
doi:10.1038/nchembio855

9. Ruthardt, N., D. C. Lamb, and C. Brauchle, "Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles," Mol. Ther., Vol. 19, No. 7, 1199-1211, 2011.
doi:10.1038/mt.2011.102

10. Thompson, N. L. and B. L. Steele, "Total internal reflection with fluorescence correlation spectroscopy," Nat. Protoc., Vol. 2, No. 4, 878-890, 2007.
doi:10.1038/nprot.2007.110

11. Toomre, D. and J. Bewersdorf, "A new wave of cellular imaging," Annu. Rev. Cell Dev. Bi., Vol. 26, 285-314, 2010.
doi:10.1146/annurev-cellbio-100109-104048

12. Li, K., W. Qin, D. Ding, N. Tomczak, J. L. Geng, R. R. Liu, J. Z. Liu, X. H. Zhang, H. W. Liu, B. Liu, and B. Z. Tang, "Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing," Sci. Rep., Vol. 3, UK, 2013.

13. Wang, D., J. Qian, S. L. He, J. S. Park, K. S. Lee, S. H. Han, and Y. Mu, "Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging," Biomaterials, Vol. 32, No. 25, 5880-5888, 2011.
doi:10.1016/j.biomaterials.2011.04.080

14. Qian, J., X. Li, M. Wei, X. W. Gao, Z. P. Xu, and S. L. He, "Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging," Opt. Express, Vol. 16, No. 24, 19568-19578, 2008.
doi:10.1364/OE.16.019568

15. Lotito, V., U. Sennhauser C. V. Hafner, and G.-L. Bona, "Interaction of an asymmetric scanning near field optical microscopy probe with fluorescent molecules," Progress In Electromagnetics Research, Vol. 121, 281-299, 2011.
doi:10.2528/PIER11091703

16. Bohmer, M. and J. Enderlein, "Orientation imaging of single molecules by wide-field epifluorescence microscopy," J. Opt. Soc. Am. B, Vol. 20, No. 3, 554-559, 2003.
doi:10.1364/JOSAB.20.000554

17. Roy, R., S. Hohng, and T. Ha, "A practical guide to single-molecule FRET," Nat. Methods, Vol. 5, No. 6, 507-516, 2008.
doi:10.1038/nmeth.1208

18. Gustafsson, M. G. L., "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Pro. Natl. Acad. Sci. USA, Vol. 102, No. 37, 13081-13086, 2005.
doi:10.1073/pnas.0406877102

19. Rust, M. J., M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods, Vol. 3, No. 10, 793-795, 2006.
doi:10.1038/nmeth929


© Copyright 2014 EMW Publishing. All Rights Reserved