PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 131-146

ANALYTICAL DESIGN AND FEM VERIFICATION OF A NOVEL THREE-PHASE SEVEN LAYERS SWITCHED RELUCTANCE MOTOR

By A. Siadatan, S. E. Afjei, and H. Torkaman

Full Article PDF (488 KB)

Abstract:
The purpose of this paper is to propose analytical and finite element method (FEM) designs of a novel three-phase Seven Layers Switched Reluctance Motor (SLSRM) for the applications which dictated by the performance with the total torque per volume as a key marker indicator. The introduced motor consists of seven magnetically independent stator layers, which each layer includes a set of 4 by4 stator/rotor poles. In this SLSRM, the three layers are energized together to produce high torque and also decrease the torque ripple in comparison with the one layer conventional SRM. Since each layer has its independent phase in the motor, the isolation problem of coils and cooling troublesome existing in conventional SRMs is solved. In addition, these types of SLSRM have some other advantages, like simpler configuration, cooling in easier way, etc. Firstly an analytical design is carried out to illustrate the design procedure and then three-dimensional (3-D) magneto static simulation analysis of the SLSRM and the one layer SRM is performed using 3-D FEM, to obtain and verify the flux-linkage, flux density and torque profiles. Also, the proposed motor is compared with a conventional one layer SRM with a same size and volume.

Citation:
A. Siadatan, S. E. Afjei, and H. Torkaman, "Analytical Design and FEM Verification of a Novel Three-Phase Seven Layers Switched Reluctance Motor," Progress In Electromagnetics Research, Vol. 140, 131-146, 2013.
doi:10.2528/PIER13040705
http://www.jpier.org/PIER/pier.php?paper=13040705

References:
1. Hasegawa, Y., K. Nakamura, and O. Ichinokura, "A novel switched reluctance motor with the auxiliary windings and permanent magnets," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3855-3858, 2012.
doi:10.1109/TMAG.2012.2197734

2. Torkaman, H. and E. Afjei, "Radial force characteristic assessment in a novel two-phase dual layer SRG using FEM," Progress In Electromagnetics Research, Vol. 125, 185-202, 2012.
doi:10.2528/PIER12010408

3. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method ," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

4. Torkaman, H. and E. Afjei, "FEM analysis of angular misalignment fault in SRM magnetostatic characteristics," Progress In Electromagnetics Research, Vol. 104, 31-48, 2010.
doi:10.2528/PIER10041406

5. Afjei, E. and H. Torkaman, "The novel two phase field-assisted hybrid SRG: Magnetostatic field analysis, simulation, and experimental confirmation," Progress In Electromagnetics Research B, Vol. 18, 25-42, 2009.
doi:10.2528/PIERB09082404

6. Baoming, G., A. T. Almeida, and F. Ferreira, "Design of transverse flux linear switched reluctance motor," IEEE Transactions on Magnetics, Vol. 45, No. 1, 113-119, 2009.
doi:10.1109/TMAG.2008.2006193

7. Lim, H., R. Krishnan, and N. S. Lobo, "Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives," IEEE Transactions on Industrial Electronics, Vol. 55, No. 2, 534-542, 2008.
doi:10.1109/TIE.2007.911942

8. Takeno, M., A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, "Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles ," IEEE Transactions on Industry Applications, Vol. 48, No. 4, 1327-1334, 2012.
doi:10.1109/TIA.2012.2199952

9. Kano, Y., T. Kosaka, and N. Matsui, "Optimum design approach for a two-phase switched reluctance compressor drive," IEEE Transactions on Industry Applications, Vol. 46, No. 3, 955-964, 2010.
doi:10.1109/TIA.2010.2045212

10. Torkaman, H., E. Afjei, and M. S. Toulabi, "New double-layer-per-phase isolated switched reluctance motor: Concept, numerical analysis, and experimental confirmation," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 830-838, 2012.
doi:10.1109/TIE.2011.2158049

11. Lee, J. W., H. S. Kim, B. Kwon, and B. Taek, "New rotor shape design for minimum torque ripple of SRM using FEM," IEEE Transactions on Magnetics, Vol. 40, No. 2, 754-757, 2004.
doi:10.1109/TMAG.2004.824803

12. Torkaman, H., E. Afjei, and P. Yadegari, "Static, dynamic, and mixed eccentricity faults diagnosis in switched reluctance motors using transient finite element method and experiments," IEEE Transactions on Magnetics, Vol. 48, No. 8, 2254-2264, 2012.
doi:10.1109/TMAG.2012.2191619

13. Kechroud, A., J. J. H. Paulides, and E. A. Lomonova, "B-spline neural network approach to inverse problems in switched reluctance motor optimal design," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4179-4182, 2011.
doi:10.1109/TMAG.2011.2151183

14. Cai, J., Z. Q. Deng, R. Y. Qi, Z. Y. Liu, and Y. H. Cai, "A novel BVC-RBF neural network based system simulation model or switched reluctance motor," IEEE Transactions on Magnetics, Vol. 47, No. 4, 830-838, 2011.
doi:10.1109/TMAG.2011.2105273

15. Belfore, L. A. and A. A. Arkadan, "A methodology for characterizing fault tolerant switched reluctance motors using neurogenetically derived models ," IEEE Transactions on Energy Conversion, Vol. 17, No. 3, 380-384, 2002.
doi:10.1109/TEC.2002.801999

16. Torkaman, H. and E. Afjei, "Hybrid method of obtaining degrees of freedom for radial airgap length in srm under normal and faulty conditions based on magnetostatic model," Progress In Electromagnetics Research, Vol. 100, 37-54, 2010.
doi:10.2528/PIER09111108

17. Torkaman, H., E. Afjei, H. Babaee, and P. Yadegari, "A novel method in ACO and its application to rotor position estimation in SRM under normal and faulty conditions," Journal of Power Electronics, Vol. 11, No. 6, 856-863, 2011.
doi:10.6113/JPE.2011.11.6.856

18. Nabeta, S. I., I. E. Chabu, L. Lebensztajn, D. A. P. Correa, W. M. Silva, and K. Hameyer, "Mitigation of the torque ripple of a switched reluctance motor through a multiobjective optimization," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1018-1021, 2008.
doi:10.1109/TMAG.2007.915137

19. Torkaman, H. and E. Afjei, "Sensorless method for eccentricity fault monitoring and diagnosis in switched reluctance machines based on stator voltage signature," IEEE Transactions on Magnetics, Vol. 49, No. 2, 912-920, 2013.
doi:10.1109/TMAG.2012.2213606

20. Afjei, E., M. R. Tavakoli, and H. Torkaman, "Eccentricity compensation in switched reluctance machines via controlling winding turns/stator current: Theory, modeling and electromagnetic analysis," Applied Computational Electromagnetics Society Journal, Vol. 28, No. 2, 168-172, 2013.

21. Li, G. J., J. Ojeda, E. Hoang, M. Lecrivain, and M. Gabsi, "Comparative studies between classical and mutually coupled switched reluctance motors using thermal-electromagnetic analysis for driving cycles," IEEE Transactions on Magnetics, Vol. 47, No. 1, 839-847, 2011.
doi:10.1109/TMAG.2011.2104968

22. Du, J., D. Liang, L. Xu, and Q. Li, "Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach," IEEE Transactions on Magnetics, Vol. 46, No. 6, 1334-1337, 2010.
doi:10.1109/TMAG.2010.2041041

23. Torkaman, H. and E. Afjei, "Comprehensive detection of eccentricity fault in switched reluctance machines using high frequency pulse injection," IEEE Transactions on Power Electronics, Vol. 28, No. 3, 1382-1390, 2013.
doi:10.1109/TPEL.2012.2205947

24. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Electromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

25. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

26. Lecointe, J. P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Electromagnetics Research, Vol. 112, 125-137, 2011.

27. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network ," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

28. Mahmoudi, A., S. Kahourzade, N. A. Rahim, H. W. Ping, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.

29. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.

30. Wang, Q. and X. Shi, "A an improved algorithm for matrix bandwidth and profile reduction in finite element analysis," Progress In Electromagnetics Research Letters, Vol. 9, 29-38, 2009.
doi:10.2528/PIERL09042305

31. Tai, C.-C. and Y.-L. Pan, "Finite element method simulation of photoinductive imaging for cracks," Progress In Electromagnetics Research Letters, Vol. 2, 53-61, 2008.
doi:10.2528/PIERL07122807

32. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

33. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and L. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite ¯nite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

34. Magnet CAD Package, User Manual, Infolytica Corporation Ltd., 2007.


© Copyright 2014 EMW Publishing. All Rights Reserved