PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 471-490

DEGREE OF DEPOLARIZATION OF QUANTIZATION HERMITE-GAUSSIAN BEAM IN A TURBULENT ATMOSPHERE

By L. Zhang, Y. Zhang, and Y. Zhu

Full Article PDF (568 KB)

Abstract:
Based on quantum Stokes operators and non-Kolmogorov spectrum model of index-of-refraction fluctuation, the analytical formulas for the quantum degree of depolarization of quantization Hermite-Gaussian (QHG) beams propagating in a turbulent atmosphere slant channel are derived. The nonclassical polarization properties of QHG beams propagating in turbulent atmosphere are studied numerically. It is found that the polarization fluctuations of QHG beams are dependent of the turbulence factors such as spectrum powerlaw exponent, refractive index structure parameter at the ground and zenith angle. The degree of depolarization of QHG beams has a saltation and reaches the minimum value at spectrum power-law exponent α = 11/3, the refractive index structure parameter at the ground of the turbulent atmosphere slightly affects the polarization degree of QHG beams which have travelled a long distance, and the change of polarization degree decreases with the increasing zenith angle. Furthermore, the numerical simulations show that QHG beams with higher photonnumber level, lower beam order, shorter wavelength are less affected by the turbulence. These results indicate that One can choose low-order QHG beams with wavelength λ = 690 nm as optical carrier, increase photon number, set the size of transmitting aperture ω0 as about 0.1 m, and detect communication signals at the central region of beams to improve the performance of a polarization-encoded free-space quantum communication system.

Citation:
L. Zhang, Y. Zhang, and Y. Zhu, "Degree of Depolarization of Quantization Hermite-Gaussian Beam in a Turbulent Atmosphere," Progress In Electromagnetics Research, Vol. 140, 471-490, 2013.
doi:10.2528/PIER13041708
http://www.jpier.org/PIER/pier.php?paper=13041708

References:
1. Villoresi, P., T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, "Experimental verification of the feasibility of a quantum channel between space and Earth," New J. Phys., Vol. 10, No. 3, 033038, 2008.
doi:10.1088/1367-2630/10/3/033038

2. Bonato, C., A. Tomaello, V. D. Deppo, G. Naletto, and P. Villoresi, "Feasibility of satellite quantum key distribution," New J. Phys., Vol. 11, No. 4, 045017, 2009.
doi:10.1088/1367-2630/11/4/045017

3. Hughes, R. J., J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10km in daylight and at night," New J. Phys., Vol. 4, No. 3, 43, 2002.
doi:10.1088/1367-2630/4/1/343

4. Rarity, J. G., P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys., Vol. 4, No. 2, 82, 2002.
doi:10.1088/1367-2630/4/1/382

5. Resch, K. J., M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. C. Fedrizzi, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, K. H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intracity, free-space quantum channel," Opt. Express, Vol. 13, No. 1, 202-209, 2005.
doi:10.1364/OPEX.13.000202

6. Rarity, J. G., P. R. Tapster, and P. M. Gorman, "Secure free-space key exchange to 1.9km and beyond," J. Mod. Opt., Vol. 48, No. 13, 1887-1901, 2001.

7. Kurtsiefer, C., P. Zarda, M. Halder, H.Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "Quantum cryptography: A step towards global key distribution," Nature, Vol. 419, 450, 2002.
doi:10.1038/419450a

8. Aspelmeyer, M., H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science, Vol. 301, No. 5633, 621-623, 2003.
doi:10.1126/science.1085593

9. Heim, B., D. Elser, T. Bartley, M. Sabuncu, C. Wittmann, D. Sych, C. Marquardt, and G. Leuchs, "Atmospheric channel characteristics for quantum communication with continuous polarization variables," Appl. Phys. B, Vol. 98, 635-640, 2010.
doi:10.1007/s00340-009-3838-8

10. Elser, D., T. Bartley, B. Heim, C. Wittmann, D. Sych, and G. Leuchs, "Feasibility of free space quantum key distribution with coherent polarization states," New J. Phys., Vol. 11, 045014, 2009.
doi:10.1088/1367-2630/11/4/045014

11. Semenov, A. A. and W. Vogel, "Entanglement transfer through the turbulent atmosphere," Phys. Rev. A, Vol. 81, 023835, 2010.
doi:10.1103/PhysRevA.81.023835

12. Erven, C., C. Couteau, R. Laflamme, and G. Weihs, "Entangled quantum key distribution over two free-space optical links," Opt. Express, Vol. 16, No. 21, 16840-16853, 2008.
doi:10.1364/OE.16.016840

13. Peng, C., T. Yang, X. Bao, J. Zhang, X. Jin, F. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. Tian, and J. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication," Phys. Rev. Lett., Vol. 4, No. 15, 150501, 2005.
doi:10.1103/PhysRevLett.94.150501

14. Peloso, M. P., I. Gerhardt, C. H. A. Lamas-Linare, and C. Kurtsiefer, "Daylight operation of a free space, entanglement-based quantum key distribution system," New J. Phys., Vol. 11, 045007, 2009.
doi:10.1088/1367-2630/11/4/045007

15. Aspelmeyer, M., T. Jennewein, and A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Select. Top. Quantu. Electro., Vol. 9, No. 6, 1541-1551, 2003.
doi:10.1109/JSTQE.2003.820918

16. Zhang, S. and L. Yi, "Two-dimensional Hermite-Gaussian solutions in strongly nonlocal nonlinear medium with rectangular boundaries," Opt. Commun., Vol. 282, No. 8, 1654-1658, 2009.
doi:10.1016/j.optcom.2008.12.013

17. Walborn, S., S. Padua, and C. Monken, "Conservation and entanglement of Hermite-Gaussian modes in parametric down-conversion," Phys. Rev. A, Vol. 71, 053812, 2005.
doi:10.1103/PhysRevA.71.053812

18. Meyrath, T., F. Schreck, and J. Hanssen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express, Vol. 13, No. 8, 2843-2851, 2005.
doi:10.1364/OPEX.13.002843

19. Young, C. Y., Y. V. Gilchrest, and B. R. Macon, "Turbulence-induced beam spreading of higher-order mode optical waves," Opt. Eng., Vol. 41, No. 5, 1097-1103, 2002.
doi:10.1117/1.1465427

20. Yu, S. and W. Gu, "Generation of elegant Hermite-Gaussian beams using the graded-phase mirror," J. Opt. A: Pure Appl. Opt., Vol. 5, No. 5, 460, 2003.
doi:10.1088/1464-4258/5/5/305

21. Chen, Y., T. Huang, C. Kao, C. Wang, and S. Wang, "Generation of Hermite-Gaussian modes in fiber-coupled laser-diode end-pumped lasers," IEEE J. Quantum Electron, Vol. 33, No. 6, 1025-1031, 1997.
doi:10.1109/3.585491

22. Cai, Y. and C. Chen, "Paraxial propagation of a partially coherent Hermite-Gaussian beam through aligned and misaligned ABCD optical systems," J. Opt. Soc. Am. A, Vol. 24, No. 8, 2394-2401, 2007.
doi:10.1364/JOSAA.24.002394

23. Qiu, Y., H. Guo, and Z. Chen, "Paraxial propagation of partially coherent Hermite-Gauss beams," Opt. Commun., Vol. 245, No. 1, 21-26, 2005.
doi:10.1016/j.optcom.2004.10.032

24. Ji, X., X. Chen, and B. Lv, "Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 25, No. 1, 21-28, 2008.
doi:10.1364/JOSAA.25.000021

25. Chu, X., "Evolution of beam quality and shape of Hermite-Gaussian beam in non-Kolmogorov turbulence," Progress In Electromagnetics Research, Vol. 153, 339-353, 2011.

26. Lv, B., H. Ma, and B. Zhang, "Propagation properties of cosh-Gaussian beams," Opt. Commun., Vol. 164, No. 4-6, 165-170, 1999.
doi:10.1016/S0030-4018(99)00193-5

27. Jana, S. and S. Konar, "Tunable spectral switching in the far field with a chirped cosh-Gaussian pulse," Opt. Commun., Vol. 267, No. 1, 24-31, 2006.
doi:10.1016/j.optcom.2006.06.013

28. Konar, S., M. Mishra, and S. Jana, "Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media," Phys. Lett. A, Vol. 362, No. 5-6, 505-510, 2007.
doi:10.1016/j.physleta.2006.11.025

29. Li, Y., Z. Wu, and L. Wang, "Polarization characteristics of a partially coherent Gaussian Schell-mode beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201

30. Tao, R., L. Si, Y. Ma, P. Zhou, and Z. Liu, "Relay propagation of partially coherent Cosh-Gaussian beams in non-Kolmogorov turbulence," Progress In Electromagnetics Research, Vol. 131, 495-515, 2012.

31. Wu, Z., H. Wei, R. Yang, and L. Guo, "Study on scintillation considering inner-and outer-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.
doi:10.2528/PIER07112505

32. Wei, H., Z.Wu, and Q. Ma, "Log-amplitude variance of laser beam propagation on the slant path through the turbulent atmosphere," Progress In Electromagnetics Research, Vol. 108, 277-291, 2010.
doi:10.2528/PIER10072205

33. Alodzhants, A. P., S. M. Arakelyan, and A. S. Chirkin, "Polarization quantum states of light in nonlinear distributed feedback systems: Quantum nondemolition measurements of the Stokes parameters of light and atomic angular momentum," Appl. Phys. B, Vol. 66, No. 1, 53-65, 1998.
doi:10.1007/s003400050356

34. Wang, Y., Y. Zhang, J. Wang, and J. Jia, "Degree of polarization for single-photon beam in a turbulent atmosphere," Opt. Commun., Vol. 284, No. 13, 3221-3226, 2011.
doi:10.1016/j.optcom.2011.03.060

35. Perina, J., V. Perinova, M. C. Teich, and P. Diament, "Two descriptions for the photocounting detection of radiation passed through a random medium: A comparison for the turbulent atmosphere," Phys. Rev. A, Vol. 7, No. 5, 1732-1737, 1973.
doi:10.1103/PhysRevA.7.1732

36. Perinova, V. and A. Luks, "Quantization of Hermite-Gaussian and Laguerre-Gaussian beams and their spatial transformations," J. Mod. Opt., Vol. 53, No. 5-6, 659-675, 2008.
doi:10.1080/09500340500254285

37. Wang, S. C. H. and M. A. Plonus, "Optical beam propagation for a partially coherent source in the turbulent atmosphere," J. Opt. Soc. Am., Vol. 69, No. 9, 1297-1304, 1979.
doi:10.1364/JOSA.69.001297

38. Yura, H. T., "Mutual coherence function of a finite cross section: Optical beam propagating in turbulent medium," Appl. Opt., Vol. 11, No. 6, 1399-1406, 1972.
doi:10.1364/AO.11.001399

39. Stribling, B. E., B. M. Welsh, and M. C. Roggemann, "Optical propagation in non-Kolmogorov atmospheric turbulence," Proc. SPIE, Vol. 2471, 181, 1995.
doi:10.1117/12.211927

40. Gradysteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 1980.


© Copyright 2014 EMW Publishing. All Rights Reserved