PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 589-598

CREATION OF SUPER-RESOLUTION NON-DIFFRACTION BEAM BY MODULATING CIRCULARLY POLARIZED LIGHTWITH TERNARY OPTICAL ELEMENT

By J. Wei, Y. Zha, and F. Gan

Full Article PDF (425 KB)

Abstract:
In order to obtain a super-resolution non-diffraction beam, we propose a fast searching method to design a ternary optical element combined with the circularly polarized light. The optimized results show that a beam with a spot size of 0.356λ and depth of focus of 8.28λ can be achieved by focusing with an oil lens of numerical aperture NA = 1.4 and refractive index of oil n = 1.5. The analysis reveals that the spot size of transverse component is 0.273λ, indicating that the super-resolution effect mainly comes from the transverse component. The spot size inside the media can theoretically reach down to 0.273λ because the spot size inside the media is mainly determined by the transverse component.

Citation:
J. Wei, Y. Zha, and F. Gan, "Creation of Super-Resolution Non-Diffraction Beam by Modulating Circularly Polarized Lightwith Ternary Optical Element," Progress In Electromagnetics Research, Vol. 140, 589-598, 2013.
doi:10.2528/PIER13042002
http://www.jpier.org/PIER/pier.php?paper=13042002

References:
1. Grosjean, T., D. Courjon, and C. Bainier, "Smallest lithographic masks generated by optical focusing systems," Opt. Lett., Vol. 32, 976-978, 2007.
doi:10.1364/OL.32.000976

2. Kim, W., N. Park, Y. Yoon, H. Choi, and Y. Park, "Investigation of near-field imaging characteristics of radial polarization for application to optical data storage," Opt. Rev., Vol. 14, 236-242, 2007.
doi:10.1007/s10043-007-0236-5

3. Quabis, S., R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun., Vol. 179, 1-7, 2000.
doi:10.1016/S0030-4018(99)00729-4

4. Grosjean, T. and D. Courjon, "Smallest focal spots," Opt. Commun., Vol. 272, 314-319, 2007.
doi:10.1016/j.optcom.2006.11.043

5. Pazynin, L. A. and G. O. Kryvchikova, "Focusing properties of Maxwell's fish eye medium," Progress In Electromagnetics Research, Vol. 131, 425-440, 2012.

6. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901

7. Martinez-Corral, M., R. Martinez-Cuenca, I. Escobar, and G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams," Appl. Phys. Lett., Vol. 85, 4319-4321, 2004.
doi:10.1063/1.1818729

8. Khonina, S. and I. Golub, "Optimization of focusing of linearly polarized light," Opt. Lett., Vol. 36, 352-354, 2011.
doi:10.1364/OL.36.000352

9. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER11042005

10. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

11. Rogers, E. T. F., J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Materials, Vol. 11, 432-435, 2012.
doi:10.1038/nmat3280

12. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.

13. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coating via surface plasmonsmodes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010

14. Yan, W., J.-D. Xu, N.-J. Li, and W. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011.

15. Wang, H., L. Shi, G. Yuan, X. Miao, W. Tan, and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693

16. Wang, H., L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics ," Nat. Photonics, Vol. 2, 501-505, 2008.
doi:10.1038/nphoton.2008.127

17. Kuang, C., X. Hao, X. Liu, T. Wang, and Y. Ku, "Formation of sub-half-wavelength focal spot with ultra long depth of focus," Opt. Commun., Vol. 284, 1766-1769, 2011.
doi:10.1016/j.optcom.2010.12.055

18. Lerman, G. and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express, Vol. 16, 4567-4581, 2008.
doi:10.1364/OE.16.004567

19. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A, Vol. 253, 358-379, 1959.
doi:10.1098/rspa.1959.0200


© Copyright 2014 EMW Publishing. All Rights Reserved