Vol. 140

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Creation of Super-Resolution Non-Diffraction Beam by Modulating Circularly Polarized Lightwith Ternary Optical Element

By Jingsong Wei, Yikun Zha, and Fuxi Gan
Progress In Electromagnetics Research, Vol. 140, 589-598, 2013


In order to obtain a super-resolution non-diffraction beam, we propose a fast searching method to design a ternary optical element combined with the circularly polarized light. The optimized results show that a beam with a spot size of 0.356λ and depth of focus of 8.28λ can be achieved by focusing with an oil lens of numerical aperture NA = 1.4 and refractive index of oil n = 1.5. The analysis reveals that the spot size of transverse component is 0.273λ, indicating that the super-resolution effect mainly comes from the transverse component. The spot size inside the media can theoretically reach down to 0.273λ because the spot size inside the media is mainly determined by the transverse component.


Jingsong Wei, Yikun Zha, and Fuxi Gan, "Creation of Super-Resolution Non-Diffraction Beam by Modulating Circularly Polarized Lightwith Ternary Optical Element," Progress In Electromagnetics Research, Vol. 140, 589-598, 2013.


    1. Grosjean, T., D. Courjon, and C. Bainier, "Smallest lithographic masks generated by optical focusing systems," Opt. Lett., Vol. 32, 976-978, 2007.

    2. Kim, W., N. Park, Y. Yoon, H. Choi, and Y. Park, "Investigation of near-field imaging characteristics of radial polarization for application to optical data storage," Opt. Rev., Vol. 14, 236-242, 2007.

    3. Quabis, S., R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun., Vol. 179, 1-7, 2000.

    4. Grosjean, T. and D. Courjon, "Smallest focal spots," Opt. Commun., Vol. 272, 314-319, 2007.

    5. Pazynin, L. A. and G. O. Kryvchikova, "Focusing properties of Maxwell's fish eye medium," Progress In Electromagnetics Research, Vol. 131, 425-440, 2012.

    6. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.

    7. Martinez-Corral, M., R. Martinez-Cuenca, I. Escobar, and G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams," Appl. Phys. Lett., Vol. 85, 4319-4321, 2004.

    8. Khonina, S. and I. Golub, "Optimization of focusing of linearly polarized light," Opt. Lett., Vol. 36, 352-354, 2011.

    9. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.

    10. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.

    11. Rogers, E. T. F., J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Materials, Vol. 11, 432-435, 2012.

    12. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.

    13. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coating via surface plasmonsmodes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.

    14. Yan, W., J.-D. Xu, N.-J. Li, and W. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011.

    15. Wang, H., L. Shi, G. Yuan, X. Miao, W. Tan, and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.

    16. Wang, H., L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics ," Nat. Photonics, Vol. 2, 501-505, 2008.

    17. Kuang, C., X. Hao, X. Liu, T. Wang, and Y. Ku, "Formation of sub-half-wavelength focal spot with ultra long depth of focus," Opt. Commun., Vol. 284, 1766-1769, 2011.

    18. Lerman, G. and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express, Vol. 16, 4567-4581, 2008.

    19. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A, Vol. 253, 358-379, 1959.