PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 241-261

ELECTRONICALLY RECONFIGURABLE BEAM STEERING ANTENNA USING EMBEDDED RF PIN BASED PARASITIC ARRAYS (ERPPA)

By T. Sabapathy, M. F. B. Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin

Full Article PDF (1,159 KB)

Abstract:
In this paper, an electronically reconfigurable beam steering antenna using embedded RF PIN switches based parasitic array (ERPPA) is proposed for modern wireless communication systems that operate at 5.8 GHz frequency. In the proposed antenna, a single driven element is fed by a coaxial probe, while each of the two parasitic elements is integrated with an RF PIN switches that embedded inside the substrate. In the conventional reconfigurable antennas, the RF PIN switches are mounted on narrow slots created on the top or bottom layer of the radiator/parasitic elements, which could lead to the dimensional changes of the antenna and degrade the performance in terms of beam steering and return loss. However, this research proposes an exclusive solution where the RF PIN diodes at parasitic elements are embedded inside the substrate thus no additional slots have to be created to mount the SMCs on the antenna. In this regard, the proposed antenna is highly competent to eliminate the intermodulation effect generated by the RF PIN diodes and the other passive elements associated with the PIN diodes. In this research, extensive investigations revealed that the parasitic element dimension and the selection of RF PIN switches significantly influence the antenna's beam steering capability. Adopting certain ON/OFF condition of the embedded RF switches, three beam-steering angles of -30°, 0° and +30° are achieved in the xz-plane, with measured peak gains at θ = -30°, 0° and +30° are 6.5 dBi, 6.5 dBi and 4.9 dBi, respectively. The fabricated antenna with Taconic substrate provides a good agreement with the simulation result. Furthermore, the performance of ERPPA is further tested by outdoor measurement using a wireless bridging system to verify the functionality of the designed antenna at the angles of -45°, -30°, -15°, 0°, 15°, 30° and 45°. The analysis with the switched diversity combining scheme has demonstrated that a maximum diversity gain approximately of 12 dBi is offered by the proposed antenna. With a compact dimension of 32 mm by 76 mm, the proposed antenna is a potential candidate in point-to-point wireless applications such as WIFI application.

Citation:
T. Sabapathy, M. F. B. Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin, "Electronically Reconfigurable Beam Steering Antenna Using Embedded RF PIN Based Parasitic Arrays (Erppa)," Progress In Electromagnetics Research, Vol. 140, 241-261, 2013.
doi:10.2528/PIER13042906
http://www.jpier.org/PIER/pier.php?paper=13042906

References:
1. Sanyal, S. K., Q. M. Alfred, and T. Chakravarty, "A novel beam-switching algorithm for programmable phased array antenna," Progress In Electromagnetics Research, Vol. 60, 187-196, 2006.
doi:10.2528/PIER05122502

2. Expósito-Domínguez, G., J.-M. Fernández González, P. Padilla de la Torre, and M. Sierra-Castañer, "Dual circular polarized steering antenna for satellite communications in x band," Progress In Electromagnetics Research, Vol. 122, 61-76, 2012.
doi:10.2528/PIER11100501

3. Yuan, T., N. Yuan, J. L.-W. Li, and M.-S. Leong, "Design and analysis of phased antenna array with low sidelobe by fast algorithm," Progress In Electromagnetics Research, Vol. 87, 131-147, 2008.
doi:10.2528/PIER08092401

4. Jusoh, M., M. F. B. Jamlos, M. R. Kamarudin, T. Sabapathy, M. I. Jais, and M. A. Jamlos, "A fabrication of intelligent spiral reconfigurable beam forming antenna for 2.35-2.39 GHz applications and path loss measurements," Progress In Electromagnetics Research, Vol. 138, 115-131, 2013.

5. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. A. A.-H. Azremi, E. I. Bin Azmi, P. J. Soh, and G. A. E. V, "A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.

6. Kang, W., K. H. Ko, and K. Kim, "A compact beam reconfigurable antenna for symmetric beam switching," Progress In Electromagnetics Research, Vol. 129, 1-16, 2012.

7. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities ," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905

8. Ojefors, E., C. Shi, K. From, I. Skarin, P. Hallbjorner, and A. Rydberg, "Electrically steerable single-layer microstrip traveling wave antenna with varactor diode based phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 55, 2451-2460, 2007.
doi:10.1109/TAP.2007.904104

9. Petit, L., L. Dussopt, and J. M. Laheurte, "MEMS-switched parasitic-antenna array for radiation pattern diversity," IEEE Transactions on Antennas and Propagation, Vol. 54, 2624-2631, 2006.
doi:10.1109/TAP.2006.880751

10. Jamlos, M. F., T. A. Rahman, M. R. Kamarudin, P. Saad, O. A. Aziz, and M. A. Shamsudin, "Adaptive beam steering of rlsa antenna with RFID technology," Progress In Electromagnetics Research, Vol. 108, 65-80, 2010.
doi:10.2528/PIER10071903

11. Zhang, S., G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Transactions on Antennas and Propagation, Vol. 52, 2773-2776, 2004.
doi:10.1109/TAP.2004.834372

12. Preston, S. L., D. V. Thiel, J. W. Lu, S. G. O'Keefe, and T. S. Bird, "Electronic beam steering using switched parasitic patch elements," Electronics Letters, Vol. 33, 7-8, 1997.
doi:10.1049/el:19970048

13. Ha, S.-J. and C.-W. Jung, "Reconfigurable beam steering using a microstrip patch antenna with a u-slot for wearable fabric applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1228-1231, 2011.
doi:10.1109/LAWP.2011.2174022

14. Li, Z., H. Mopidevi, O. Kaynar, and B. A. Cetiner, "Beam-steering antenna based on parasitic layer," Electronics Letters, Vol. 48, 59-60, 2012.
doi:10.1049/el.2011.2787

15. Zhao, S.-C., B.-Z. Wang, and W. Shao, "Reconfigurable Yagi-Uda substrate for RCS reduction of patch antenna," Progress In Electromagnetics Research B, Vol. 11, 173-187, 2009.
doi:10.2528/PIERB08120101

16. Nair, S. and M. J. Ammann, "Reconfigurable antenna with elevation and azimuth beam switching," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 367-370, 2010.
doi:10.1109/LAWP.2010.2049332

17. Boudaghi, H., M. Azarmanesh, and M. Mehranpour, "A frequency-reconfigurable monopole antenna using switchable slotted ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 655-658, 2012.
doi:10.1109/LAWP.2012.2204030

18. Jose, S., HPND-4005 beam lead PIN diode, Datasheet, Avago Technologies, CA, 2006.

19. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice Hall, 1988.

20. Silicon PIN diodes, BAR-50, Infineon Technologies AG, Munich, Germany, 2009.

21. Kamarudin, M. R., Y. I. Nechayev, and P. S. Hall, "Onbody diversity and angle-of-arrival measurement using a pattern switching antenna ," IEEE Transactions on Antennas and Propagation, Vol. 57, 964-971, 2009.
doi:10.1109/TAP.2009.2014597

22. Sabapathy, T., S. W. Tan, and T. C. Chuah, "Fuzzy weight controller based cell-site diversity for rain fading mitigation in LMDS networks in the tropics," Progress In Electromagnetics Research B, Vol. 28, 235-251, 2011.

23. Lempiainen, J. J. A. and K. I. Nikoskinen, "Signal correlations and diversity gain of two-beam microcell antenna," IEEE Transactions on Vehicular Technology, Vol. 47, 755-765, 1998.
doi:10.1109/25.704831


© Copyright 2014 EMW Publishing. All Rights Reserved