PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 327-340

ANALYSIS OF TRANSMISSION PROPERTIES IN A PHOTONIC QUANTUM WELL CONTAINING SUPERCONDUCTING MATERIALS

By T.-W. Chang, J.-W. Liu, T.-J. Yang, and C.-J. Wu

Full Article PDF (346 KB)

Abstract:
Properties of wave transmission in a photonic quantum well (PQW) structure containing superconducting materials are theoretically investigated. We consider two possible PQW structures, (AB)P(CD)Q(AB)P-asymmetric and (AB)P(CD)Q(BA)P-symmetric, where the host photonic crystal (PC) (AB)P is made of dielectrics, A = SrTiO3, B = Al2O3, and the PQW (CD)Q contains C = A and superconducting layer D = YBa2Cu3O7-x, a typical high-temperature superconducting thin film. Multiple transmission peaks can be seen within the photonic band gap (PBG) of (AB)P and the number of peaks is directly determined by the stack number of PQW, i.e., it equals Q-1. Additionally, the results show that symmetric PQW structure is preferable to the design of a multichannel transmission filter. The effect of stack number of photonic barrier is also illustrated. Such a filter operating at terahertz with feature of multiple channels is of technical use in superconducting optoelectronic applications.

Citation:
T.-W. Chang, J.-W. Liu, T.-J. Yang, and C.-J. Wu, "Analysis of Transmission Properties in a Photonic Quantum Well Containing Superconducting Materials," Progress In Electromagnetics Research, Vol. 140, 327-340, 2013.
doi:10.2528/PIER13050604
http://www.jpier.org/PIER/pier.php?paper=13050604

References:
1. Orfanidis, S. J., Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2010, www.ece.rutgers.edu/~orfanidi/ewa.

2. Dobrzynski, L., A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, and J. Zemmouri, "Giant gaps in photonic band structures," Physical Review B, Vol. 57, R9388-9391, 1998.
doi:10.1103/PhysRevB.57.R9388

3. Pendry, J., "Calculating photonic band structure," Journal of Physics, Vol. 8, 1085-1108, 1995.

4. Qiao, F., C. Zhang, and J. Wan, "Photonic quantum-well structures: Multiple channeled filtering phenomena," Applied Physics Letters, Vol. 77, 3698-3701, 2000.
doi:10.1063/1.1330570

5. Lindner, N. H., G. Refael, and V. Galitski, "Floquet topological insulator in semiconductor quantum wells," Nature Physics, Vol. 7, 490-495, 2011.
doi:10.1038/nphys1926

6. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surface Review and Letters, Vol. 16, 171-190, 2009.
doi:10.1142/S0218625X09012482

7. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079

8. Jiang, Y., C. Niu, and D. L. Lin, "Resonance tunneling through photonic quantum wells," Physical Review B, Vol. 59, 9981-9986, 1999.
doi:10.1103/PhysRevB.59.9981

9. Yano, S., Y. Segawa, J. S. Bae, K. Mizuno, H. Miyazaki, K. Ohtaka, and S. Yamaguchi, "Quantized state in a single quantum well structure of photonic crystals," Physical Review B, Vol. 63, 153316, 2001.
doi:10.1103/PhysRevB.63.153316

10. Chen, X., W. Lu, and S. C. Shen, "Photonic resonant transmission in the quantum-well structure of photonic crystals," Solid State Communications, Vol. 127, 541-544, 2003.
doi:10.1016/S0038-1098(03)00509-X

11. Liu, J., J. Sun, C. Huang, W. Hu, and D. Hunag, "Optimizing the spectral efficiency of photonic quantum well structure," Optik, Vol. 120, 35-39, 2009.
doi:10.1016/j.ijleo.2007.06.011

12. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Tunable multichannel filter in a photonic crystal containing semiconductor photonic quantum well," IEEE Photonics Journal, Vol. 4, No. 1, 293-290, 2012.

13. Chang, Y.-H., Y.-Y. Jhu, and C.-J. Wu, "Temperature and bias dependences of defect mode in a photonic crystal containing a photonic-quantum-well defect ," J. Optoelectron. Adv. Materials, Vol. 14, 185-192, 2012.

14. Xu, C., X. Xu, D. Han, X. Liu, C. P. Liu, and C. J.Wu, "Photonic quantum-well structures containing negative-index materials," Optics Communications, Vol. 280, 221-224, 2007.
doi:10.1016/j.optcom.2007.07.041

15. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal Optics Express,", Vol. 18, 27155-27166, 2010.

16. Hu, C.-A., C.-J. Wu, T.-J. Yang, and S.-L. Yang, "Analysis of effective plasma frequency in a superconducting photonic crystal," Journal of Optical Society of America B: Optical Physics, Vol. 30, 366-369, 2013.
doi:10.1364/JOSAB.30.000366

17. Poddubny, A. N., E. L. Ivchenko, and Yu. E. Lozovik, "Low-frequency spectroscopy of superconducting photonic crystals," Solid State Communications, Vol. 146, 143-147, 2008.
doi:10.1016/j.ssc.2008.02.003

18. Berman, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals: Numerical calculation of the band structure," Physical Review B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

19. Raymond Ooi, C. H., T. C. Au Yeung, C. H. Kam, and T. K. Lim, "Photonic band gap in a superconductor-dielectric superlattice," Physical Review B, Vol. 61, 5920-5926, 2000.
doi:10.1103/PhysRevB.61.5920

20. Wu, C.-J., C.-L. Liu, and T.-J. Yang, "Investigation photonic band structure in a one-dimensional superconducting photonic crystal," Journal of Optical Society of America B: Optical Physics, Vol. 26, 2089-2094, 2009.
doi:10.1364/JOSAB.26.002089

21. Hu, C.-A., J.-W. Liu, C.-J. Wu, T.-J. Yang, and S.-L. Yang, "Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure," Solid State Communications, Vol. 157, 54-57, 2013.
doi:10.1016/j.ssc.2012.12.022

22. Lyubchanskii, I. L., N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee, and Th. Rasing, "A one-dimensional photonic crystal with a superconducting defect layer," J. Optics: Pure and Appl. Optics, Vol. 36, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

23. Dadoenkova, N. N., A. E. Zabolotin, I. L. Lyubchanskii, Y. P. Lee, and Th. Rasing, "One-dimensional photonic crystal with a complex defect containing an ultrathin superconducting sublayer," Journal of Applied Physics, Vol. 108, 093117, 2010.
doi:10.1063/1.3494034

24. Barvestani, J., "Analytical investigation of one-dimensional photonic crystals with a dielectric-superconducting pair defect," Optics Communications, Vol. 284, 231-235, 2011.
doi:10.1016/j.optcom.2010.08.053

25. Becerra, G., E. Moncada-Villa, and J. C. Granada, "Local-ized modes in metamaterial-dielectric photonic crystals with a dielectric-superconductor pair defect," Journal of Superconductivity and Novel Magnetism, Vol. 25, 2163-2166, 2012.
doi:10.1007/s10948-012-1640-z

26. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

27. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor ," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

28. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
doi:10.2528/PIER12010311

29. Chang, T.-W., J.-J. Wu, and C.-J. Wu, "Complex photonic band structures in a photonic crystal containing lossy semiconductor InSb," Progress In Electromagnetics Research, Vol. 131, 153-167, 2012.

30. Hsu, H.-T., M.-H. Lee, T.-J. Yang, Y.-C. Wang, and C.-J. Wu, "A multichanneled filter in a photonic crystal containing coupled defects," Progress In Electromagnetics Research, Vol. 117, 379-392, 2011.

31. Zhang, H. F., S. Liu, X.-K. Kong, B.-R. Bian, and X. Zhao, "Properties of omnidirectional photonic band gaps in fibonacci quasi-periodic one-dimensional superconductor photonic crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.

32. Suthar, B., V. Kumar, A. Kumar, K. S. Singh, and A. Bhargava, "Thermal expansion of photonic band gap for one dimensional photonic crystal," Progress In Electromagnetics Research Letters, Vol. 32, 81-90, 2012.

33. Suthar, B. and A. Bhargava, "Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
doi:10.2528/PIERL11072208

34. Gharaati, A. and A. Serajfard, "Analytical calculation of band gap of a 1D planar ternary photonic crystal by simulating with a symmetric lossless transmission line," Progress In Electromagnetics Research Letters, Vol. 28, 101-109, 2012.
doi:10.2528/PIERL11102007

35. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one dimensional ternary metallo-dielectric nanolayered photonic crystal," Progress In Electromagnetics Research B, Vol. 37, 125-141, 2012.
doi:10.2528/PIERB11101410

36. Simserides, C. D. and G. P. Triberis, "A systematic study of electronic states in n-Al1x Ga11-x As/GaAs/n-AlxGa1-x as selectively doped double-heterojunction structures," Journal of Physics: Condensed Matters, Vol. 5, 6437-6446, 1993.
doi:10.1088/0953-8984/5/35/009


© Copyright 2014 EMW Publishing. All Rights Reserved