1. Shults, M. C., R. K. Rhodes, S. J. Updike, B. J. Gilligan, and W. N. Reining, "A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors," IEEE Transactions on Biomedical Engineering, Vol. 41, No. 10, 937-942, 1994.
doi:10.1109/10.324525 Google Scholar
2. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113 Google Scholar
3. Guillory, K. S. and R. A. Normann, "A 100-channel system for real time detection and storage of extracellular spike waveforms," Journal of Neuroscience Methods, Vol. 91, No. 1-2, 21-29, 1999.
doi:10.1016/S0165-0270(99)00076-X Google Scholar
4. Permana, H., Q. Fang, and W. S. T. Rowe, "Hermetic implantable antenna inside vitreous humor simulating fluid," Progress In Electromagnetics Research, Vol. 133, 571-590, 2013. Google Scholar
5. Yasukawa, T., Y. Ogura, E. Sakurai, Y. Tabata, and H. Kimura, "Intraocular sustained drug delivery using implantable polymeric devices," Advanced Drug Delivery Reviews, Vol. 57, No. 14, 2033-2046, 2005.
doi:10.1016/j.addr.2005.09.005 Google Scholar
6. FCC, , "Medical implant communications service (MICS) federal register,", Rules and Regulations, 1999. Google Scholar
7. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604 Google Scholar
8. Kiourti, A. and K. S. Nikita, "A review on implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Magazine on Antennas and Propagation, Vol. 54, No. 3, 210-228, 2012.
doi:10.1109/MAP.2012.6293992 Google Scholar
9. Kiourti, A. and K. S. Nikita, "Meandered versus spiral novel miniature PIFAs implanted in the human head: Tuning and performance," 2nd International ICST Conference on Wireless Mobile Communication and Healthcare, 80-87, Kos Island, Greece, 2011. Google Scholar
10. Soontornpipit, P., C. M. Furse, and C. Y. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976 Google Scholar
11. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 3568-3575, 2012.
doi:10.1109/TAP.2012.2201078 Google Scholar
12. Guo, Y.-X., D. Zhu, and R. Jegadeesan, "Inductive wireless power transmission for implantable devices," International Workshop on Antenna Technology, 445-448, 2011. Google Scholar
13. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring ," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373 Google Scholar
14. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693 Google Scholar
15. Sanchez-Fernandez, C. J., O. Quevedo-Teruel, J. Requena-Carrion, L. Inclan-Sanchez, and E. Rajo-Iglesias, "Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices," IET Microwaves, Antennas & Propagation, Vol. 4, No. 8, 1048-1055, 2010.
doi:10.1049/iet-map.2009.0594 Google Scholar
16. Bradley, P., "An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable," IEEE Biomedical Circuits and Systems Conference, 158-161, 2006.
doi:10.1109/BIOCAS.2006.4600332 Google Scholar
17. Kiourti, A., J. R. Costa, C. A. Fernandes, A. G. Santiago, and K. S. Nikita, "Miniature implantable antennas for biomedical telemetry: From simulation to realization," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 11, 3140-3147, 2012.
doi:10.1109/TBME.2012.2202659 Google Scholar
18. Warty, R., M. R. Tofighi, U. Kawoos, and A. Rosen, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2366-2376, 2008.
doi:10.1109/TMTT.2008.2004254 Google Scholar
19. Kiourti, A. and K. S. Nikita, "Accelerated design of optimized implantable antennas for medical telemetry," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1655-1658, 2012.
doi:10.1109/LAWP.2013.2238499 Google Scholar
20. Sun, W. and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006.
21. Kiourti, A., M. Christopoulou, and K. S. Nikita, "Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry," IEEE International Symposium on Antennas and Propagation, 392-395, 2011. Google Scholar
22. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
23. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
25. Ansoft, , "High frequency structure simulator (HFSS),", Version 11, 2008. Google Scholar
26. Kiourti, A. and K. S. Nikita, "Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry," IEEE International Symposium on Antennas and Propagation, Chicago, Illinois, USA, Jul. 8-14, 2012. Google Scholar
27. Remcom, , "XFDTD®, electromagnetic solver based on the finite difference time domain method," , Version 6.3, 2005.. Google Scholar
28. Kiourti, A. and K. S. Nikita, "Numerical assessment of the performance of a scalp-implantable antenna: Effects of head anatomy and dielectric parameters," Wiley Bioelectromagnetics, 2012.
doi:10.2528/PIER11120515 Google Scholar
29. , , "IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz," , IEEE Standard C95.1-1999, 1999. Google Scholar
30. , , "IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz," , IEEE Standard C95.1-2005, 2005. Google Scholar
31. Vidal, N., S. Curto, J. M. Lopez Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012. Google Scholar