PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 161-183

DUAL-BAND IMPLANTABLE ANTENNAS FOR MEDICAL TELEMETRY: A FAST DESIGN METHODOLOGY AND VALIDATION FOR INTRA-CRANIAL PRESSURE MONITORING

By A. Kiourti, K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita

Full Article PDF (559 KB)

Abstract:
In this study, we suggest and experimentally validate a methodology for fast and optimized design of dual-band implantable antennas for medical telemetry (MICS, 402-405 MHz, and ISM, 2400-2480 MHz). The methodology aims to adjust the design of a parametric dual-band antenna model towards optimally satisfying the requirements imposed by the antenna-fabrication procedure and medical application in hand. Design is performed in a systematic, fast, and accurate way. To demonstrate its effectiveness, the proposed methodology is applied to optimize the parametric antenna model for intra-cranial pressure (ICP) monitoring given a specific antenna-fabrication procedure. For validation purposes, a prototype of the optimized antenna is fabricated and experimentally tested. The proposed antenna is further evaluated within a 13-tissue anatomical head model in terms of resonance, radiation, and safety performance for ICP monitoring. Extensive parametric studies of the optimized antenna are, finally, performed. Feasibility of the proposed parametric antenna model to be optimally re-adjusted for various scenarios is demonstrated, and generic guidelines are provided for implantable antenna design. Dual-band operation is targeted to ensure energy autonomy for the implant. Finite Element (FE) and Finite Difference Time Domain (FDTD) simulations are carried out in homogeneous rectangular and anatomical head tissue models, respectively.

Citation:
A. Kiourti, K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, "Dual-Band Implantable Antennas for Medical Telemetry: a Fast Design Methodology and Validation for Intra-Cranial Pressure Monitoring," Progress In Electromagnetics Research, Vol. 141, 161-183, 2013.
doi:10.2528/PIER13051706
http://www.jpier.org/PIER/pier.php?paper=13051706

References:
1. Shults, M. C., R. K. Rhodes, S. J. Updike, B. J. Gilligan, and W. N. Reining, "A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors," IEEE Transactions on Biomedical Engineering, Vol. 41, No. 10, 937-942, 1994.
doi:10.1109/10.324525

2. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113

3. Guillory, K. S. and R. A. Normann, "A 100-channel system for real time detection and storage of extracellular spike waveforms," Journal of Neuroscience Methods, Vol. 91, No. 1-2, 21-29, 1999.
doi:10.1016/S0165-0270(99)00076-X

4. Permana, H., Q. Fang, and W. S. T. Rowe, "Hermetic implantable antenna inside vitreous humor simulating fluid," Progress In Electromagnetics Research, Vol. 133, 571-590, 2013.

5. Yasukawa, T., Y. Ogura, E. Sakurai, Y. Tabata, and H. Kimura, "Intraocular sustained drug delivery using implantable polymeric devices," Advanced Drug Delivery Reviews, Vol. 57, No. 14, 2033-2046, 2005.
doi:10.1016/j.addr.2005.09.005

6. FCC, , "Medical implant communications service (MICS) federal register,", Rules and Regulations, 1999.

7. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

8. Kiourti, A. and K. S. Nikita, "A review on implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Magazine on Antennas and Propagation, Vol. 54, No. 3, 210-228, 2012.
doi:10.1109/MAP.2012.6293992

9. Kiourti, A. and K. S. Nikita, "Meandered versus spiral novel miniature PIFAs implanted in the human head: Tuning and performance," 2nd International ICST Conference on Wireless Mobile Communication and Healthcare, 80-87, Kos Island, Greece, 2011.

10. Soontornpipit, P., C. M. Furse, and C. Y. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976

11. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 3568-3575, 2012.
doi:10.1109/TAP.2012.2201078

12. Guo, Y.-X., D. Zhu, and R. Jegadeesan, "Inductive wireless power transmission for implantable devices," International Workshop on Antenna Technology, 445-448, 2011.

13. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring ," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373

14. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

15. Sanchez-Fernandez, C. J., O. Quevedo-Teruel, J. Requena-Carrion, L. Inclan-Sanchez, and E. Rajo-Iglesias, "Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices," IET Microwaves, Antennas & Propagation, Vol. 4, No. 8, 1048-1055, 2010.
doi:10.1049/iet-map.2009.0594

16. Bradley, P., "An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable," IEEE Biomedical Circuits and Systems Conference, 158-161, 2006.
doi:10.1109/BIOCAS.2006.4600332

17. Kiourti, A., J. R. Costa, C. A. Fernandes, A. G. Santiago, and K. S. Nikita, "Miniature implantable antennas for biomedical telemetry: From simulation to realization," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 11, 3140-3147, 2012.
doi:10.1109/TBME.2012.2202659

18. Warty, R., M. R. Tofighi, U. Kawoos, and A. Rosen, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2366-2376, 2008.
doi:10.1109/TMTT.2008.2004254

19. Kiourti, A. and K. S. Nikita, "Accelerated design of optimized implantable antennas for medical telemetry," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1655-1658, 2012.
doi:10.1109/LAWP.2013.2238499

20. Sun, W. and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, 2006.

21. Kiourti, A., M. Christopoulou, and K. S. Nikita, "Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry," IEEE International Symposium on Antennas and Propagation, 392-395, 2011.

22. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

23. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

25. Ansoft, , "High frequency structure simulator (HFSS),", Version 11, 2008.

26. Kiourti, A. and K. S. Nikita, "Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry," IEEE International Symposium on Antennas and Propagation, Chicago, Illinois, USA, Jul. 8-14, 2012.

27. Remcom, , "XFDTD®, electromagnetic solver based on the finite difference time domain method," , Version 6.3, 2005..

28. Kiourti, A. and K. S. Nikita, "Numerical assessment of the performance of a scalp-implantable antenna: Effects of head anatomy and dielectric parameters," Wiley Bioelectromagnetics, 2012.
doi:10.2528/PIER11120515

29. , , "IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz," , IEEE Standard C95.1-1999, 1999.

30. , , "IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz," , IEEE Standard C95.1-2005, 2005.

31. Vidal, N., S. Curto, J. M. Lopez Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved