Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 221-229


By D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Z. Gong

Full Article PDF (548 KB)

In this paper, a four-band metamaterial absorber (MA) based on flower-shaped structure is proposed. The design, simulation, fabrication, and measurement of the absorbers working in four bands are presented. Simulation results show that the MA has four distinctive absorption peaks at frequencies 6.69 GHz, 7.48 GHz, 8.67 GHz, and 9.91 GHz with the absorptivity of 0.96, 0.99, 0.99 and 0.98, respectively. Experiment results matches well with the simulation. Both experiment and simulation results exhibit that the MA are polarization-insensitive for TE wave and TM wave. The flower-shaped structure is also suitable for designing of a four-band THz and even higher frequency MM absorber, which would be a promising candidate as absorbing elements in scientific and technical applications.

D. Zheng, Y. Cheng, D. Cheng, Y. Nie, and R. Z. Gong, "Four-Band Polarization-Insensitive Metamaterial Absorber Based on Flower-Shaped Structures," Progress In Electromagnetics Research, Vol. 142, 221-229, 2013.

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

3. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic clock at microwave frequencies," Science, Vol. 314, 977-980, 2006.

6. Maxim, V. G., I. V. Shadrivov, and Y. S. Kivshar, "Enhanced parametric processes in binary metamaterials," Appl. Phys. Lett., Vol. 88, 071912, 2006.

7. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Metamaterial exhibiting left-handed properties over multiple frequency bands," J. Appl. Phys., Vol. 96, 5338, 2004.

8. Sydoruk, O., O. Zhuromskyy, and E. Shamonina, "Phonon-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett., Vol. 87, 072501, 2005.

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

10. Hu, T., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication, and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.

11. Hu, T., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 432, 25102, 2010.

12. He, X. J., Y. M. Wang, and T. L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress in Electromagnetics Research, Vol. 115, 381-397, 2011.

13. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.

14. Zhang, N., P. Zhou, D. Cheng, X. Weng, J. Xiao, and J. Deng, "Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers," Opt. Lett., Vol. 38, No. 7, 1125-1127, 2013.

15. Lee, H. M. and H. Lee, "A metamaterial based microwave absorber composed of coplanar electric-field-coupled resonator and wire array," Progress In Electromagnetics Research C, Vol. 34, 111-121, 2013.

16. Cheng, Y. Z., H. L. Yang, Z. Cheng, and B. X. Xiao, "A planar polarization-insensitive metamaterial absorber," Photonics and Nanostructures: Fundamentals and Applications, Vol. 9, 8-14, 2011.

17. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

18. Cheng, Y. Z., Y. Nie, R. Z. Gong, and H. L. Yang, "Multi-band metamaterial absorber using cave-cross resonator," Eur. Phys. J. Appl. Phys., Vol. 56, 31301, 2011.

19. Kollatou, T. M., A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, "A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures," Progress In Electromagnetics Research, Vol. 136, 579-594, 2013.

20. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

21. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012.

22. Zhang, F., L. Yang, Y. Jin, and S. He, "Turn a highly-reflective metal into an omnidirectional broadband absorber by coating a purely-dielectric thin layer of grating," Progress In Electromagnetics Research, Vol. 134, 95-109, 2013.

23. Tuong, P. V., V. D. Lam, J. W. Park, E. H. Choi, S. A. Nikitov, and Y. P. Lee, "Perfect-absorber metamaterial based on flower-shaped structure," Photonics and Nanostructures: Fundamentals and Applications, Vol. 11, 89-94, 2013.

© Copyright 2014 EMW Publishing. All Rights Reserved