PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 659-670

COHERENT ANTI-STOKES RAMAN SCATTERING MICROSCOPY BY DISPERSIVE WAVE GENERATIONS IN A POLARIZATION MAINTAINING PHOTONIC CRYSTAL FIBER

By J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrell, and L. Hou

Full Article PDF (812 KB)

Abstract:
The polarization maintaining photonic crystal fiber (PM-PCF) with two zero dispersion wavelengths is designed and fabricated by the improved stack-and-draw technology in our laboratory. The broadband blue-shifted and red-shifted dispersive waves (DWs) are efficiently generated from soliton self-frequency shift (SSFS) along the slow axis of PM-PCF. By optimizing the pump parameters and the fiber length, the polarized DWs centered in the normal dispersion region can be used as the pump and Stokes pulses for the high resolution coherent anti-Stokes Raman scattering (CARS) microscopy. Moreover, it is demonstrated that the widely tunable relevant CARS wavelengths can be obtained by adjusting the pump wavelength. The CARS microscopy based on DWs can find important applications in detecting the biological and chemical samples with the C=N, S-H, C-H, and O-H stretch vibration resonances of 2100 to 2400 cm-1, 2500 to 2650 cm-1, 2700 to 3000 cm-1, and 3000 to 3750 cm-1.

Citation:
J. Yuan, G. Zhou, H. Liu, C. Xia, X. Sang, Q. Wu, C. Yu, K. Wang, B. Yan, Y. Han, G. Farrell, and L. Hou, "Coherent Anti-Stokes Raman Scattering Microscopy by Dispersive Wave Generations in a Polarization Maintaining Photonic Crystal Fiber," Progress In Electromagnetics Research, Vol. 141, 659-670, 2013.
doi:10.2528/PIER13070302
http://www.jpier.org/PIER/pier.php?paper=13070302

References:
1. Duncan, M. D., J. Reintjes, and T. J. Manuccia, "Scanning coherent anti-Stokes Raman microscope," Opt. Lett., Vol. 7, 350-352, 1982.
doi:10.1364/OL.7.000350

2. Cheng, J. X., L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 26, 1341-1343, 2001.
doi:10.1364/OL.26.001341

3. Evans, C. L., E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman scattering spectral interferometry: Determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy," Opt. Lett., Vol. 29, 2923-2925, 2004.
doi:10.1364/OL.29.002923

4. Kee, T. W. and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 29, 2701-2703, 2004.
doi:10.1364/OL.29.002701

5. Lefrancois, S., D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, "Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett., Vol. 37, 1652-1654, 2012.
doi:10.1364/OL.37.001652

6. Baumgartl, M., M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tunnermann, "All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion," Opt. Express, Vol. 20, 4484-4493, 2012.
doi:10.1364/OE.20.004484

7. Russell, P. St. J., "Photonic crystal fibers," Science, Vol. 299, 358-362, 2003.
doi:10.1126/science.1079280

8. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

9. Russell, P. St. J., "Photonic crystal fibers," J. Lightw. Technol., Vol. 24, 4729-4749, 2006.
doi:10.1109/JLT.2006.885258

10. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photon., Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285

11. Guenneau, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003.
doi:10.2528/PIER02010893

12. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

13. Paulsen, H. N., K. M. Hilligs¿e, J. Th¿gersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett., Vol. 28, 1123-1125, 2003.
doi:10.1364/OL.28.001123

14. Andresen, E. R. and H. N. Paulsen, "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Soc. Am. B, Vol. 22, 1934-1938, 2005.
doi:10.1364/JOSAB.22.001934

15. Murugkar, S., C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express, Vol. 15, 14028-14037, 2007.
doi:10.1364/OE.15.014028

16. Savvin, A. D., A. A. Lanin, A. A. Voronin, A. B. Fedotov, and A. M. Zheltikov, "Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers," Opt. Lett., Vol. 35, 919-921, 2010.
doi:10.1364/OL.35.000919

17. Klarskov, P., A. Isomaki, K. P. Hansen, and P. E. Andersen, "Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers," Opt. Express, Vol. 19, 26672-26683, 2011.
doi:10.1364/OE.19.026672

18. Coen, S., A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J.Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett., Vol. 26, 1356-1358, 2001.
doi:10.1364/OL.26.001356

19. Wadsworth, W. J., A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source," J. Opt. Soc. Am. B, Vol. 19, 2148-2155, 2002.
doi:10.1364/JOSAB.19.002148

20. Dudley, J. M., L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B, Vol. 19, 765-771, 2002.
doi:10.1364/JOSAB.19.000765

21. Saitoh, K. and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, Vol. 12, 2027-2032, 2004.
doi:10.1364/OPEX.12.002027

22. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys., Vol. 78, 1135-1184, 2005.
doi:10.1103/RevModPhys.78.1135

23. Mitrokhin, V. P., A. A. Ivanov, A. B. Fedotov, M. V. Alfimov, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Y. N. Kondrat'ev, A. A. Podshivalov, and A. M. Zheltikov, "Spectral transformation ofmegawatt femtosecond optical pulses in large-mode-area high-index-step photonic-crystal fibers," Laser Phys. Lett., Vol. 4, 529-533, 2007.
doi:10.1002/lapl.200710010

24. Abedin, K. S., J. T. Gopinath, E. P. Ippen, C. E. Kerbage, R. S. Windeler, and B. J. Eggleton, "Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber," Appl. Phys. Lett., Vol. 81, 1384-1386, 2002.
doi:10.1063/1.1501440

25. Yang, T. T., C. Shu, and C. Lin, "Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber," Opt. Express, Vol. 13, 5409-5415, 2005.
doi:10.1364/OPEX.13.005409

26. Hu, M. L., C. Y. Wang, Y. J. Song, Y. F. Li, and L. Chai, "Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers," Opt. Express, Vol. 14, 1189-1198, 2006.
doi:10.1364/OE.14.001189

27. Asimakis, S., P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, "Towards e±cient and broadband four-wave-mixing using short-length dispersion tailored lead silicate Holey fibers," Opt. Express, Vol. 15, 596-601, 2007.
doi:10.1364/OE.15.000596

28. Sloanes, T., K. McEwan, B. Lowans, and L. Michaille, "Optimisation of high average power optical parametric generation using a photonic crystal fiber," Opt. Express, Vol. 16, 19724-19733, 2008.
doi:10.1364/OE.16.019724

29. Yuan, J. H., X. Z. Sang, C. X. Yu, Y. Han, G. Y. Zhou, S. G. Li, and L. T. Hou, "Highly eFFIcient and broadband Cherenkov radiation at the visible wavelength in the fundamental mode of photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 23, 786-788, 2011.
doi:10.1109/LPT.2011.2136431

30. Yuan, J. H., X. Z. Sang, Q. Wu, C. X. Yu, X. W. Shen, K. R. Wang, B. B. Yan, Y. Han, G. Y. Zhou, Y. Semenova, G. Farrell, and L. T. Hou, "Efficient red-shifted dispersive wave in a photonic crystal fiber for widely tunable mid-infrared wavelength generation," Laser Phys. Lett., Vol. 10, 045405-1, 2013.

31. Peng, J. H., A. V. Sokolov, F. Benabid, F. Biancalana, P. S. Light, F. Couny, and P. J. Roberts, "Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding," Phys. Rev. A., Vol. 81, 031803(R)-1-031803(R)-4, 2010.

32. Serebryannikov, E. E., A. M. Zheltikov, S. Kohler, N. Ishii, C. Y. Teisset, T. Fuji, F. Krausz, and A. Baltuska, "Diffraction-arrested soliton self-frequency shift of few-cycle laser pulses in a photonic-crystal fiber," Phys. Rev. E, Vol. 73, 066617-1-066617-4, 2006.
doi:10.1103/PhysRevE.73.066617


© Copyright 2014 EMW Publishing. All Rights Reserved