PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 463-483

FULL-VECTORIAL PARALLEL FINITE-ELEMENT CONTRAST SOURCE INVERSION METHOD

By A. Zakaria, I. Jeffrey, J. LoVetri, and A. Zakaria

Full Article PDF (1,046 KB)

Abstract:
The multiplicatively regularized finite-element contrast source inversion algorithm (MR-FEM-CSI) is used to solve the full-vectorial three-dimensional (3D) inverse scattering problem. The contrast and contrast-source optimization variables are located at the centroids of tetrahedra within the problem domain; whereas the electric field is expanded in terms of edge basis functions on the same tetrahedra. A dual-mesh is created in order to apply the multiplicative regularization. To handle large-scale problems the inversion algorithm is parallelized using the MPI library, with sparse matrix and vector computations supported by PETSc. The algorithm is tested using experimental datasets obtained from the Institut Fresnel database. A synthetic example shows that the technique is able to successfully image moisture hot-spots within a partially lled grain bin.

Citation:
A. Zakaria, I. Jeffrey, J. LoVetri, and A. Zakaria, "Full-Vectorial Parallel Finite-Element Contrast Source Inversion Method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706
http://www.jpier.org/PIER/pier.php?paper=13080706

References:
1. Abubakar, A., T. Habashy, G. Pan, and M. Li, "Application of the multiplicative regularized Gauss-Newton algorithm for three-dimensional microwave imaging," IEEE Tran. on Antenn. and Propag., Vol. 60, No. 5, 2431-2441, May 2012.
doi:10.1109/TAP.2012.2189712

2. Grzegorczyk, T., P. Meaney, P. Kaufman, R. di Florio-Alexander, and K. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Tran. on Med. Imaging, Vol. 31, No. 8, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218

3. Amineh, R. K., A. Khalatpour, and N. Nikolova, "Three-dimensional microwave holographic imaging using co- and cross-polarized data," IEEE Tran. on Antenn. and Propag., Vol. 60, No. 7, 3526-3531, 2012.
doi:10.1109/TAP.2012.2196932

4. Mudry, E., P. C. Chaumet, K. Belkebir, and A. Sentenac, "Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method," Inverse Probl., Vol. 28, No. 6, 065007, 2012, [Online], Available: http://stacks.iop.org/0266-5611/28/i=6/a=065007.

5. Gilmore, C. and J. LoVetri, "Enhancement of microwave tomography through the use of electrically conducting enclosures," Inverse Probl., Vol. 24, No. 3, 035008, 2008, [Online], Available: http://stacks.iop.org/0266-5611/24/i=3/a=035008.
doi:10.1088/0266-5611/24/3/035008

6. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Probl., Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013

7. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798

8. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Probl., Vol. 26, No. 11, 115010, Nov. 2010, [Online], Available: http://stacks.iop.org/0266-5611/26/i=11/a=115010.
doi:10.1088/0266-5611/26/11/115010

9. Zakaria, A., A. Baran, and J. LoVetri, "Estimation and use of prior information in FEM-CSI for biomedical microwave tomography," IEEE Antenn. Wirel. Pr., Vol. 11, 1606-1609, 2012.
doi:10.1109/LAWP.2012.2237537

10. Zakaria, A. and J. LoVetri, A study of adaptive meshing in FEM-CSI for microwave tomography, The 14th Int. Symp. on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conf. , 1-4, Ottawa, Canada, 2010.

11. Zakaria, A. and J. LoVetri, "The finite-element method contrast source inversion algorithm for 2D transverse electric vectorial problems," IEEE Tran. on Antenn. and Propag., Vol. 60, No. 10, 4757-4765, Oct. 2012.
doi:10.1109/TAP.2012.2207324

12. Ostadrahimi, M., A. Zakaria, J. LoVetri, and L. Shafai, "A near-field dual polarized (TE-TM) microwave imaging system," IEEE Tran. on Microw. Theory and Techniques, Vol. 61, No. 3, 1376-1384, Mar. 2013.
doi:10.1109/TMTT.2012.2237181

13. Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, "PETSc users manual," Argonne National Laboratory, Tech. Rep. ANL-95/11 --- Revision 3.3, 2012.

14. Jin, J., The Finite Element Method in Electromagnetics, John Wiley and Sons, New York, 2002.

15. Zakaria, A., The finite-element contrast source inversion method for microwave imaging applications, Ph.D. Dissertation, University of Manitoba, Mar. 2012, [Online], Available: http://hdl.handle.net/1993/5213.

16. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetic Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

17. Abubakar, A., T. M. Habashy, and P. M. van den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205

18. Zakaria, A. and J. LoVetri, "Application of multiplicative regularization to the finite-element contrast source inversion method," IEEE Tran. on Antenn. and Propag., Vol. 59, No. 9, 3495-3498, Sep. 2011.
doi:10.1109/TAP.2011.2161564

19. Van den Berg, P. M., A. Abubakar, and J. Fokkema, "Multiplicative regularization for contrast profile inversion," Radio Sci., Vol. 38, No. 2, 23 (1-10), 2003.

20. Balay, S., J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc web page, 2012, http://www.mcs.anl.gov/petsc.

21. Li, X. S. and J. W. Demmel, "Super LU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems," ACM Trans. Mathematical Software, Vol. 29, No. 2, 110-140, Jun. 2003.
doi:10.1145/779359.779361

22. Boman, E., K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, and J. Teresco, "Zoltan 3.0: Parallel partitioning, load-balancing, and data management services," User's Guide, Sandia National Laboratories, Tech. Report SAND2007-4748W, Albuquerque, NM, 2007.

23. Geuzaine, C. and J.-F. Remacle, "GMSH: A 3-D finite element mesh generator with built-in pre- and post-processing facilities," International Journal for Numerical Methods in Engineering, Vol. 79, 1309-1331, 2009.
doi:10.1002/nme.2579

24. Nelson, S. O., A. W. Kraszewski, S. Trabelsi, and K. C. Lawrence, "Using cereal grain permittivity for sensing moisture content," IEEE Tran. on Instrum. Meas., Vol. 49, No. 3, 470-475, Jun. 2000.
doi:10.1109/19.850378

25. Nelson, S. O. and S. Trabelsi, "Dielectric spectroscopy of wheat from 10MHz to 1.8 GHz," Meas. Sci. Technol., Vol. 17, No. 8, 2294-2298, Jul. 2006.
doi:10.1088/0957-0233/17/8/034

26. Geffrin, J. M. and P. Sabouroux, "Continuing with the Fresnel database: Experimental setup and improvements in 3D scattering measurements," Inverse Probl., Vol. 25, No. 2, 024001, Feb. 2009.
doi:10.1088/0266-5611/25/2/024001

27. Li, M., A. Abubakar, and P. M. van den Berg, "Application of the multiplicative regularized contrast source inversion method on 3D experimental fresnel data," Inverse Probl., Vol. 25, No. 2, 024006, Feb. 2009, [Online], Available: http://stacks.iop.org/0266-5611/25/i=2/a=024006.
doi:10.1088/0266-5611/25/2/024006

28. Yu, C., M. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-frequency experimental data with a fast DBIM-BCGS method," Inverse Probl., Vol. 25, No. 2, 024007, Feb. 2009, [Online], Available: http://stacks.iop.org/0266-5611/25/i=2/a=024007.
doi:10.1088/0266-5611/25/2/024007


© Copyright 2014 EMW Publishing. All Rights Reserved