1. Gibson, P., "The Vivaldi aerial," 9th European Microwave Conference, 101-105, 1979. Google Scholar
2. Lewis, L., M. Fassett, and J. Hunt, "A broadband stripline array element," IEEE Antennas and Propagation Society International Symposium , Vol. 12, 335-337, 1974. Google Scholar
3. Yngvesson, K., D. Schaubert, T. Korzeniowski, E. Kollberg, T. Thungren, and J. A. Johansson, "Endfire tapered slot antennas on dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 12, 1392-1400, Dec. 1985.
doi:10.1109/TAP.1985.1143542 Google Scholar
4. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 135, No. 2, 89-92, Apr. 1988.
doi:10.1049/ip-h-2.1988.0020 Google Scholar
5. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications ," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904 Google Scholar
6. Lai, A., A. Sinopoli, and W. Burnside, "A novel antenna for ultra-wide-band applications," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 7, 755-760, 1992.
doi:10.1109/8.155739 Google Scholar
7. Bai, J., S. Shi, and D. Prather, "Modified compact antipodal Vi-valdi antenna for 4--50 GHz UWB application," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970 Google Scholar
8. Simons, R. and R. Lee, "On-wafer characterization of millimeter-wave antennas for wireless applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 1, 92-96, 1999.
doi:10.1109/22.740086 Google Scholar
9. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601 Google Scholar
10. Woten, D., M. Hajihashemi, A. Hassan, and M. El-Shenawee, "Experimental microwave validation of level set reconstruction algorithm ," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 230-233, 2010.
doi:10.1109/TAP.2009.2036186 Google Scholar
11. Maklad, B., C. Curtis, E. C. Fear, and G. G. Messier, "Neighborhood-based algorithm to facilitate the reduction of skin reactions in radar-based microwave imaging ," Progress In Electromagnetics Research B, Vol. 39, 115-139, 2012.
doi:10.2528/PIERB11122208 Google Scholar
12. Ostadrahimi, M., S. Noghanian, L. Shafai, A. Zakaria, C. Kaye, and J. LoVetri, "Investigating a double layer Vivaldi antenna design for fixed array eld measurement," International Journal of Ultra Wideband Communications and Systems, Vol. 1, No. 4, 282-290, 2010.
doi:10.1504/IJUWBCS.2010.034309 Google Scholar
13. Gilmore, C., A. Zakaria, P. Mojabi, M. Ostadrahimi, S. Pistorius, and J. Lo Vetri, "The University of Manitoba microwave imaging repository: A two-dimensional microwave scattering database for testing inversion and calibration algorithms ," IEEE Antennas and Propagation Magazine, Vol. 53, No. 5, 126-133, Oct. 2011.
doi:10.1109/MAP.2011.6138442 Google Scholar
14. Ostadrahimi, M., P. Mojabi, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A novel microwave tomography system based on the scattering probe technique ," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 2, 379-390, Feb. 2012.
doi:10.1109/TIM.2011.2161931 Google Scholar
15. Ostadrahimi, M., P. Mojabi, C. Gilmore, A. Zakaria, S. Noghanian, S. Pistorius, and J. LoVetri, "Analysis of incident field modeling and incident/scattered field calibration techniques in microwave tomography," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 900-903, 2011.
doi:10.1109/LAWP.2011.2166849 Google Scholar
16. Ostadrahimi, M., A. Zakaria, J. LoVetri, and L. Shafai, "A near-field dual polarized TE-TM microwave imaging system," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1376-1384, 2013.
doi:10.1109/TMTT.2012.2237181 Google Scholar
17. Yang, Y., C. Zhang, and A. Fathy, "Development and implementation of ultra-wideband see-through-wall imaging system based on sampling oscilloscope," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 465-468, 2008.
doi:10.1109/LAWP.2008.2000829 Google Scholar
18. Qu, S., J. Li, Q. Xue, and C. Chan, "Wideband cavity-backed bowtie antenna with pattern improvement," EEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3850-3854, 2008.
doi:10.1109/TAP.2008.2007395 Google Scholar
19. Li, R., B. Pan, A. Traille, J. Papapolymerou, J. Laskar, and M. Tentzeris, "Development of a cavity-backed broadband circularly polarized slot/strip loop antenna with a simple feeding structure ," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 312-318, 2008.
doi:10.1109/TAP.2007.915412 Google Scholar
20. Ozdemir, T., J. Volakis, and M. Nurnberger, "Analysis of thin multioctave cavity-backed slot spiral antennas," IEE Proceedings --- Microwaves, Antennas and Propagation,, Vol. 146, No. 6, 447-447, 1999.
doi:10.1049/ip-map:19990429 Google Scholar
21. "Ansys-HFSS simulator package,", 2012.
doi:www.ansys.com Google Scholar
22. Potter, P., "A new horn antenna with suppressed sidelobes and equal beamwidths," Microwave Journal, Vol. 71, 1963. Google Scholar
23. Silver, S., Microwave Antenna Theory and Design, Vol. 19, The Institution of Electrical Engineers, 1984.
doi:10.1049/PBEW019E
24. Olver, A. D., P. Clarricoats, A. Kishk, and L. Shafai, "Microwave Horns and Feeds," 490, IET, 1994. Google Scholar