1. Hahn, K., et al. "Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer's disease --- Revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence," NeuroImage, Vol. 81, 96-109, 2013.
doi:10.1016/j.neuroimage.2013.05.011 Google Scholar
2. Brookmeyer, R., et al. "Forecasting the global burden of Alzheimer's disease," Alzheimers Dement, Vol. 3, No. 3, 186-191, 2007.
doi:10.1016/j.jalz.2007.04.381 Google Scholar
3. Chen, X., W. Yang, and X. Huang, "ICA-based classification of MCI vs HC," 2011 Seventh International Conference on Natural Computation (ICNC), Vol. 3, 1658-1662, 2011.
doi:10.1109/ICNC.2011.6022275 Google Scholar
4. Kubota, T., Y. Ushijima, and T. Nishimura, "A region-of-interest (ROI) template for three-dimensional stereotactic surface projection (3D-SSP) images: Initial application to analysis of Alzheimer disease and mild cognitive impairment ," International Congress Series, Vol. 1290, 128-134, 2006.
doi:10.1016/j.ics.2005.11.104 Google Scholar
5. Pennanen, C., et al. "Hippocampus and entorhinal cortex in mild cognitive impairment and early AD," Neurobiology of Aging, Vol. 25, No. 3, 303-310, 2004.
doi:10.1016/S0197-4580(03)00084-8 Google Scholar
6. Lee, W., B. Park, and K. Han, "Classification of diffusion tensor images for the early detection of Alzheimer's disease," Computers in Biology and Medicine, Vol. 43, No. 10, 1313-1320, 2013.
doi:10.1016/j.compbiomed.2013.07.004 Google Scholar
7. Lopez, M. M., et al. "SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA," Neuroscience Letters, Vol. 464, No. 3, 233-238, 2009.
doi:10.1016/j.neulet.2009.08.061 Google Scholar
8. Camacho, J., J. Pico, and A. Ferrer, "Corrigendum to `the best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?'," Anal. Chim. Acta, Vol. 642, 59-68, 2009.
doi:10.1016/j.aca.2009.02.001 Google Scholar
9. Ortiz, A., et al. "LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer's disease," Pattern Recognition Letters, Vol. 34, No. 14, 1725-1733, 2013.
doi:10.1016/j.patrec.2013.04.014 Google Scholar
10. Ardekani, B. A., K. Figarsky, and J. J. Sidtis, "Sexual dimorphism in the human corpus callosum: An MRI study using the OASIS brain database," Cereb Cortex, Vol. 10, No. 25, 2514-2520, 2012. Google Scholar
11. Ardekani, B. A., et al. "Corpus callosum shape changes in early Alzheimer's disease: An MRI study using the OASIS brain database," Brain Struct. Funct., Vol. 219, No. 1, 343-352, 2013.
doi:10.1007/s00429-013-0503-0 Google Scholar
12. Bin Tufail, A., et al. "Multiclass classification of initial stages of Alzheimer's disease using structural MRI phase images ," 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 317-321, 2012.
doi:10.1109/ICCSCE.2012.6487163 Google Scholar
13. "What is OASIS? OASIS: Cross-sectional MRI data in young, middle aged, nondemented and demented older adults 2013,".
doi:http://www.oasis-brains.org/ Google Scholar
14. MÄoller, C., et al. "Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease," Neurobiology of Aging, Vol. 34, No. 8, 2014-2022, 2013.
doi:10.1016/j.neurobiolaging.2013.02.013 Google Scholar
15. Alexander, G. E., et al. "Gray matter network associated with risk for Alzheimer's disease in young to middle-aged adults," Neurobiology of Aging, Vol. 33, No. 12, 2723-2732, 2012.
doi:10.1016/j.neurobiolaging.2012.01.014 Google Scholar
16. Smith, S. M., "Fast robust automated brain extraction," Human Brain Mapping, Vol. 17, No. 3, 143-155, 2002.
doi:10.1002/hbm.10062 Google Scholar
17. Kuslansky, G., et al. "Detecting dementia with the Hopkins verbal learning test and the minimental state examination," Archives of Clinical Neuropsychology, Vol. 19, No. 1, 89-104, 2004. Google Scholar
18. Maxeiner, H. and M. Behnke, "Intracranial volume, brain volume, reserve volume and morphological signs of increased intracranial pressure | A post-mortem analysis," Legal Medicine, Vol. 10, No. 6, 293-300, 2008.
doi:10.1016/j.legalmed.2008.04.001 Google Scholar
19. Buckner, R. L., et al. "A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume," NeuroImage, Vol. 23, No. 2, 724-738, 2004.
doi:10.1016/j.neuroimage.2004.06.018 Google Scholar
20. Fotenos, A. F., et al. "Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD," Neurology, Vol. 64, No. 6, 1032-1039, 2005.
doi:10.1212/01.WNL.0000154530.72969.11 Google Scholar
21. Williams, M. M., et al. "Progression of Alzheimer's disease as measured by clinical dementia rating sum of boxes scores," Alzheimer's & Dementia, Vol. 9, No. 1, S39-S44, 2013.
doi:10.1016/j.jalz.2012.01.005 Google Scholar
22. Marcus, D. S., et al. "Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults," J. Cogn. Neurosci., Vol. 19, No. 9, 1498-1507, 2007.
doi:10.1162/jocn.2007.19.9.1498 Google Scholar
23. Zhang, Y. and L. Wu, "An MR brain images classi¯er via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
doi:10.2528/PIER12061410 Google Scholar
24. Gass, S. I. and T. Rapcsak, "Singular value decomposition in AHP," European Journal of Operational Research, Vol. 154, No. 3, 573-584, 2004.
doi:10.1016/S0377-2217(02)00755-5 Google Scholar
25. Rajendra Acharya, U., et al. "Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework," Expert Systems with Applications, Vol. 39, No. 10, 9072-9078, 2012.
doi:10.1016/j.eswa.2012.02.040 Google Scholar
26. Kuroda, M., et al. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Vol. 55, No. 1, 143-153, 2011.
doi:10.1016/j.csda.2010.06.001 Google Scholar
27. Cuingnet, R., et al. "Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database," NeuroImage, Vol. 56, No. 2, 766-781, 2011.
doi:10.1016/j.neuroimage.2010.06.013 Google Scholar
28. Arun Kumar, M. and M. Gopal, "A hybrid SVM based decision tree," Pattern Recognition, Vol. 43, No. 12, 3977-3987, 2010.
doi:10.1016/j.patcog.2010.06.010 Google Scholar
29. Xu, Z., P. Li, and Y. Wang, "Text classifier based on an improved SVM decision tree," Physics Procedia, Vol. 33, 1986-1991, 2012.
doi:10.1016/j.phpro.2012.05.312 Google Scholar
30. Nasseri, M., H. Tavakol-Davani, and B. Zahraie, "Performance assessment of different data mining methods in statistical downscaling of daily precipitation," Journal of Hydrology, Vol. 492, 1-14, 2013.
doi:10.1016/j.jhydrol.2013.04.017 Google Scholar
31. Acevedo-Rodriguez, J., et al. "Computational load reduction in decision functions using support vector machines," Signal Processing, Vol. 89, No. 10, 2066-2071, 2009.
doi:10.1016/j.sigpro.2009.03.032 Google Scholar
32. Deris, A. M., A. M. Zain, and R. Sallehuddin, , "Overview of support vector machine in modeling machining performances," Procedia Engineering, Vol. 24, 308-312, 2011.
doi:10.1016/j.proeng.2011.11.2647 Google Scholar
33. Zhang, Y. and L. Wu, "Classification of fruits using computer vision and a multiclass support vector machine," Sensors, Vol. 12, No. 9, 12489-12505, 2012.
doi:10.3390/s120912489 Google Scholar
34. Wu, K.-P. and S.-D. Wang, "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space," Pattern Recognition, Vol. 42, No. 5, 710-717, 2009.
doi:10.1016/j.patcog.2008.08.030 Google Scholar
35. Fei, S.-W., "Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine," Expert Systems with Applications, Vol. 37, No. 10, 6748-6752, 2010.
doi:10.1016/j.eswa.2010.02.126 Google Scholar
36. Zhao, C., et al. "Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine," Expert Systems with Applications, Vol. 38, No. 8, 9908-9912, 2011.
doi:10.1016/j.eswa.2011.02.078 Google Scholar