1. Griffo, A., D. Drury, T. Sawata, and P. H. Mellor, "Sensorless starting of a wound-field synchronous starter/generator for aerospace applications," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3579-3587, 2012.
doi:10.1109/TIE.2011.2159953 Google Scholar
2. Chen, Z., H. Wang, and Y. Yang, "A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3588-3595, 2012.
doi:10.1109/TIE.2011.2159951 Google Scholar
3. Wang, C.-F., M.-J. Jin, J.-X. Shen, and C. Yuan, "A permanent magnet integrated starter generator for electric vehicle onboard range extender application," IEEE Trans. Magn., Vol. 48, No. 4, 1625-1628, 2012.
doi:10.1109/TMAG.2011.2173469 Google Scholar
4. Seo, J.-H., S.-M. Kim, and H.-K. Jun, "Rotor-design strategy of IPMSM for 42V integrated starter generator," IEEE Trans. Magn., Vol. 46, No. 6, 2458-2461, 2010.
doi:10.1109/TMAG.2010.2043417 Google Scholar
5. Chai, F., Y. Pei, X. Li, B. Guo, and S. Cheng, "The performance research of starter-generator based on reluctance torque used in HEV," IEEE Trans. Magn., Vol. 45, No. 9, 2458-2461, 2010. Google Scholar
6. Fukami, T., Y. Matsuura, K. Shima, M. Momiyama, and M. Kawamura, "A multipole synchronous machine with non-overlapping concentrated armature and field windings on the stator," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2583-2591, 2012.
doi:10.1109/TIE.2011.2157293 Google Scholar
7. Di Stefano, R. and F. Marignetti, "Electromagnetic analysis of axial-flux permanent magnet synchronous machines with fractional windings with experimental validation," IEEE Trans. Ind. Electron., Vol. 59, 2573-2582, 2012.
doi:10.1109/TIE.2011.2165458 Google Scholar
8. Pavlovcic, F., "The commutator optimization due to electrically caused wear," Proc. XIX International Conference on Electrical Machines (ICEM'2010), 1-6, Sep. 6-8, 2010. Google Scholar
9. Vauquelin, A., J.-P. Vilain, S. Vivier, N. Labbe, and B. Dupeux, "A new modeling of DC machine taking into account commutation effects," Proc. XVIII International Conference on Electrical achines (ICEM'2008), 1-6, Villamoura, Portugal, Sep. 6-9, 2008. Google Scholar
10. Wang, H., "Modeling of universal motor performance and brush commutation using finite element computed inductance and resistance matrices," IEEE Trans. Energy Convers., Vol. 15, No. 3, 257-263, 2000.
doi:10.1109/60.875490 Google Scholar
11. Di-Gerlando, A. and R. Perini, "Model of commutation phenomena in a universal motor," IEEE Trans. Energy Convers., Vol. 21, No. 1, 27-33, 2006.
doi:10.1109/TEC.2004.841514 Google Scholar
12. Batzel, T. D., N. C. Becker, and M. Comanescu, "Analysis of brushed dc machinery fault with coupled finite element method and equivalent circuit model," IJME, Vol. 11, No. 2, 5-13, 2011. Google Scholar
13. Matsuda, T., T. Moriyama, N. Konda, Y. Suzuki, and Y. Hashimoto, "Method for analyzing the commutation in small universal motors," IEE PROC-B, Vol. 142, 123{-130, 1995. Google Scholar
14. Glowacz, Z. and W. Glowacz, "Mathematical model of dc motor for analysis of commutation processes," EPQU, Vol. 8, 65-68, 2007. Google Scholar
15. Andreux, R., J. Fontchastagner, N. Takorabet, N. Labbe, and J-S. Metral, "Magnetic field-electric circuit coupled method for brush DC motor simulations," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012. Google Scholar
16. Sincero, G. C. R., J. Ghannou, J. Cros, and P. Viarouge, "Collector model for simulation of brush machines," Math. Comput. Simulation, Vol. 81, 340-353, 2010.
doi:10.1016/j.matcom.2010.07.025 Google Scholar
17. Lin, D., P. Zhou, W. N. Fu, B. Ionescu, and Z. J. Cendes, "Flexible approach for brush-commutation machine simulation," IEEE Trans. Magn., Vol. 44, No. 6, 1542-1545, 2008.
doi:10.1109/TMAG.2007.916241 Google Scholar
18. Sincero, G. C. R., J. Cros, and P. Viarouge, "Arc models for simulation of brush motor commutations," IEEE Trans. Magn., Vol. 44, No. 6, 1518-1521, 2008.
doi:10.1109/TMAG.2007.915087 Google Scholar
19. Willing, M., T. Miller, and I. Corral, "A brush model for detailed commutation analysis of universal motors," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012. Google Scholar
20. Bracikowski, N., M. Hecquet, P. Brochet, and S. V. Shirinskii, "Multiphysics modeling of a permanent magnet synchronous machine by using lumped models," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2426-2437, 2012.
doi:10.1109/TIE.2011.2169640 Google Scholar
21. Holzapfel, C., "Selected aspects of the electrical behavior in sliding electrical contacts," Proc. IEEE 57th Holm Conference on Electrical Contacts, 1-9, Sep. 2011. Google Scholar
22. Liu, K., Z. Q. Zhu, Q. Zhang, and J. Zhang, "Influence of non ideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2438-3447, 2012.
doi:10.1109/TIE.2011.2162214 Google Scholar
23. Fu, W. N. and S. L. Ho, "Extension of the concept of windings in magnetic field-electric circuit coupled finite-element method," IEEE Trans. Magn., Vol. 46, No. 6, 2119-2123, 2010.
doi:10.1109/TMAG.2010.2041433 Google Scholar
24. Liu, R., Y. Zhang, M. Hu, and D. Yan, "Field circuit coupled time stepping finite element analysis on permanent magnet brushless DC motors," Proc. ICEMS 2005, Vol. 3, 2105-2109, 2005. Google Scholar
25. Wang, X. and D. Xie, "Analysis of induction motor using field-circuit coupled timeperiodic finite element method taking into account of hysteresis," IEEE Trans. Magn., Vol. 45, No. 3, 1740-1743, 2009.
doi:10.1109/TMAG.2009.2012802 Google Scholar
26. Pusca, R., R. Romary, V. Fireteanu, and A. Ceban, "Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors," Progress In Electromagnetics Research B, Vol. 50, 37-59, 2013.
doi:10.2528/PIERB13021203 Google Scholar
27. Akbari, H., "A modified model of squirrel cage induction machine under general rotor misalignment fault," Progress In Electromagnetics Research B, Vol. 54, 185-201, 2013.
doi:10.2528/PIERB13071804 Google Scholar
28. Konwar, R. S., K. Kalita, A. Banerjee, and W. K. S. Khoo, "Electromagnetic analysis of a bridge configured winding cage induction machine using finite element method," Progress In Electromagnetics Research B, Vol. 48, 347-373, 2013.
doi:10.2528/PIERB12112205 Google Scholar
29. Lesniewska, E. and R. Rajchert, "3D field-circuit analysis of measurement properties of current transformers with axially and radially connected cores made of different magnetic materials," Progress In Electromagnetics Research M, Vol. 28, 1-13, 2013. Google Scholar
30. Kurihara, K. and S. Sakamoto, "Steady-state and transient performance analysis for universal motors with appropriate turns ratio of lead coils to lag coils," IEEE Trans. Magn., Vol. 44, No. 6, 1506-1509, 2008.
doi:10.1109/TMAG.2007.916406 Google Scholar
31. Davat, B., R. Ren, and M. Lajoie-Mazenc, "The movement in field modeling," IEEE Trans. Magn., Vol. 21, No. 6, 2296-2298, 1985.
doi:10.1109/TMAG.1985.1064185 Google Scholar
32. Sadowski, N., Y. Lefevre, M. Lajoie-Mazenc, and . Cros, "Finite element torque calculation in electrical machines while considering the movement," IEEE Trans. Magn., Vol. 28, No. 2, 1410-1413, 1992.
doi:10.1109/20.123957 Google Scholar