PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 213-227

A GENERAL APPROACH FOR BRUSHED DC MACHINES SIMULATION USING A DEDICATED FIELD/CIRCUIT COUPLED METHOD

By R. Andreux, J. Fontchastagner, N. Takorabet, N. Labbe, and J.-S. Metral

Full Article PDF (2,290 KB)

Abstract:
This paper deals with the modeling of the brushed DC motor used as a reinforced starter for a micro-hybrid automotive application. The aim of such a system, also called ``stop-start'', is to stop a combustion engine when the vehicle pulls to a stop, and to restart it when the driver accelerates. A reinforced starter is able to ensure this new function in addition to the classical cold start. Then, its life time has to be widely increased in comparison with a classical starter. They have to be optimized, and more especially their process of commutation in order to minimize commutator and brush wears, and thereby increase the lifetime of the device up to the whole life of the vehicle. The main contribution of the paper is the development of a coupled FE-circuit model taking into account local saturation and arc phenomena. Brush-segment contact resistance introduced in the circuit model has been computed efficiently and compared to measures. The whole model has been validated by experimental measurements which are carried out with specific experimental test benches.

Citation:
R. Andreux, J. Fontchastagner, N. Takorabet, N. Labbe, and J.-S. Metral, "A General Approach for Brushed DC Machines Simulation Using a Dedicated Field/Circuit Coupled Method," Progress In Electromagnetics Research, Vol. 145, 213-227, 2014.
doi:10.2528/PIER14011402
http://www.jpier.org/PIER/pier.php?paper=14011402

References:
1. Griffo, A., D. Drury, T. Sawata, and P. H. Mellor, "Sensorless starting of a wound-field synchronous starter/generator for aerospace applications," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3579-3587, 2012.
doi:10.1109/TIE.2011.2159953

2. Chen, Z., H. Wang, and Y. Yang, "A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application," IEEE Trans. Ind. Electron., Vol. 59, No. 9, 3588-3595, 2012.
doi:10.1109/TIE.2011.2159951

3. Wang, C.-F., M.-J. Jin, J.-X. Shen, and C. Yuan, "A permanent magnet integrated starter generator for electric vehicle onboard range extender application," IEEE Trans. Magn., Vol. 48, No. 4, 1625-1628, 2012.
doi:10.1109/TMAG.2011.2173469

4. Seo, J.-H., S.-M. Kim, and H.-K. Jun, "Rotor-design strategy of IPMSM for 42V integrated starter generator," IEEE Trans. Magn., Vol. 46, No. 6, 2458-2461, 2010.
doi:10.1109/TMAG.2010.2043417

5. Chai, F., Y. Pei, X. Li, B. Guo, and S. Cheng, "The performance research of starter-generator based on reluctance torque used in HEV," IEEE Trans. Magn., Vol. 45, No. 9, 2458-2461, 2010.

6. Fukami, T., Y. Matsuura, K. Shima, M. Momiyama, and M. Kawamura, "A multipole synchronous machine with non-overlapping concentrated armature and field windings on the stator," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2583-2591, 2012.
doi:10.1109/TIE.2011.2157293

7. Di Stefano, R. and F. Marignetti, "Electromagnetic analysis of axial-flux permanent magnet synchronous machines with fractional windings with experimental validation," IEEE Trans. Ind. Electron., Vol. 59, 2573-2582, 2012.
doi:10.1109/TIE.2011.2165458

8. Pavlovcic, F., "The commutator optimization due to electrically caused wear," Proc. XIX International Conference on Electrical Machines (ICEM'2010), 1-6, Sep. 6-8, 2010.

9. Vauquelin, A., J.-P. Vilain, S. Vivier, N. Labbe, and B. Dupeux, "A new modeling of DC machine taking into account commutation effects," Proc. XVIII International Conference on Electrical achines (ICEM'2008), 1-6, Villamoura, Portugal, Sep. 6-9, 2008.

10. Wang, H., "Modeling of universal motor performance and brush commutation using finite element computed inductance and resistance matrices," IEEE Trans. Energy Convers., Vol. 15, No. 3, 257-263, 2000.
doi:10.1109/60.875490

11. Di-Gerlando, A. and R. Perini, "Model of commutation phenomena in a universal motor," IEEE Trans. Energy Convers., Vol. 21, No. 1, 27-33, 2006.
doi:10.1109/TEC.2004.841514

12. Batzel, T. D., N. C. Becker, and M. Comanescu, "Analysis of brushed dc machinery fault with coupled finite element method and equivalent circuit model," IJME, Vol. 11, No. 2, 5-13, 2011.

13. Matsuda, T., T. Moriyama, N. Konda, Y. Suzuki, and Y. Hashimoto, "Method for analyzing the commutation in small universal motors," IEE PROC-B, Vol. 142, 123{-130, 1995.

14. Glowacz, Z. and W. Glowacz, "Mathematical model of dc motor for analysis of commutation processes," EPQU, Vol. 8, 65-68, 2007.

15. Andreux, R., J. Fontchastagner, N. Takorabet, N. Labbe, and J-S. Metral, "Magnetic field-electric circuit coupled method for brush DC motor simulations," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012.

16. Sincero, G. C. R., J. Ghannou, J. Cros, and P. Viarouge, "Collector model for simulation of brush machines," Math. Comput. Simulation, Vol. 81, 340-353, 2010.
doi:10.1016/j.matcom.2010.07.025

17. Lin, D., P. Zhou, W. N. Fu, B. Ionescu, and Z. J. Cendes, "Flexible approach for brush-commutation machine simulation," IEEE Trans. Magn., Vol. 44, No. 6, 1542-1545, 2008.
doi:10.1109/TMAG.2007.916241

18. Sincero, G. C. R., J. Cros, and P. Viarouge, "Arc models for simulation of brush motor commutations," IEEE Trans. Magn., Vol. 44, No. 6, 1518-1521, 2008.
doi:10.1109/TMAG.2007.915087

19. Willing, M., T. Miller, and I. Corral, "A brush model for detailed commutation analysis of universal motors," Proc. XXth International Conference on Electrical Machines (ICEM'2012), Marseille, France, Sep. 2-5, 2012.

20. Bracikowski, N., M. Hecquet, P. Brochet, and S. V. Shirinskii, "Multiphysics modeling of a permanent magnet synchronous machine by using lumped models," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2426-2437, 2012.
doi:10.1109/TIE.2011.2169640

21. Holzapfel, C., "Selected aspects of the electrical behavior in sliding electrical contacts," Proc. IEEE 57th Holm Conference on Electrical Contacts, 1-9, Sep. 2011.

22. Liu, K., Z. Q. Zhu, Q. Zhang, and J. Zhang, "Influence of non ideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., Vol. 59, No. 6, 2438-3447, 2012.
doi:10.1109/TIE.2011.2162214

23. Fu, W. N. and S. L. Ho, "Extension of the concept of windings in magnetic field-electric circuit coupled finite-element method," IEEE Trans. Magn., Vol. 46, No. 6, 2119-2123, 2010.
doi:10.1109/TMAG.2010.2041433

24. Liu, R., Y. Zhang, M. Hu, and D. Yan, "Field circuit coupled time stepping finite element analysis on permanent magnet brushless DC motors," Proc. ICEMS 2005, Vol. 3, 2105-2109, 2005.

25. Wang, X. and D. Xie, "Analysis of induction motor using field-circuit coupled timeperiodic finite element method taking into account of hysteresis," IEEE Trans. Magn., Vol. 45, No. 3, 1740-1743, 2009.
doi:10.1109/TMAG.2009.2012802

26. Pusca, R., R. Romary, V. Fireteanu, and A. Ceban, "Finite element analysis and experimental study of the near-magnetic field for detection of rotor faults in induction motors," Progress In Electromagnetics Research B, Vol. 50, 37-59, 2013.
doi:10.2528/PIERB13021203

27. Akbari, H., "A modified model of squirrel cage induction machine under general rotor misalignment fault," Progress In Electromagnetics Research B, Vol. 54, 185-201, 2013.
doi:10.2528/PIERB13071804

28. Konwar, R. S., K. Kalita, A. Banerjee, and W. K. S. Khoo, "Electromagnetic analysis of a bridge configured winding cage induction machine using finite element method," Progress In Electromagnetics Research B, Vol. 48, 347-373, 2013.
doi:10.2528/PIERB12112205

29. Lesniewska, E. and R. Rajchert, "3D field-circuit analysis of measurement properties of current transformers with axially and radially connected cores made of different magnetic materials," Progress In Electromagnetics Research M, Vol. 28, 1-13, 2013.

30. Kurihara, K. and S. Sakamoto, "Steady-state and transient performance analysis for universal motors with appropriate turns ratio of lead coils to lag coils," IEEE Trans. Magn., Vol. 44, No. 6, 1506-1509, 2008.
doi:10.1109/TMAG.2007.916406

31. Davat, B., R. Ren, and M. Lajoie-Mazenc, "The movement in field modeling," IEEE Trans. Magn., Vol. 21, No. 6, 2296-2298, 1985.
doi:10.1109/TMAG.1985.1064185

32. Sadowski, N., Y. Lefevre, M. Lajoie-Mazenc, and . Cros, "Finite element torque calculation in electrical machines while considering the movement," IEEE Trans. Magn., Vol. 28, No. 2, 1410-1413, 1992.
doi:10.1109/20.123957


© Copyright 2014 EMW Publishing. All Rights Reserved