PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 147 > pp. 57-68

A STED MICROSCOPE DESIGNED FOR ROUTINE BIOMEDICAL APPLICATIONS (Invited Paper)

By F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell

Full Article PDF (720 KB)

Abstract:
We present a multi-color STED fluorescence microscope providing far-field optical resolution down to 20 nm for biomedical research. The optical design comprises fiber lasers, beam scanners, and a set of active and passive polarizing elements that cooperatively yield an optically robust system for routinely imaging samples at subdiffraction length scales.

Citation:
F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, "A STED Microscope Designed for Routine Biomedical Applications (Invited Paper)," Progress In Electromagnetics Research, Vol. 147, 57-68, 2014.
doi:10.2528/PIER14042708
http://www.jpier.org/PIER/pier.php?paper=14042708

References:
1. Hell, S. W. and J. Wichmann, "Breaking the diffraction resolution limit by stimulated-emission --- Stimulated-emission-depletion fluorescence microscopy," Optics Letters, Vol. 19, No. 11, 780-782, 1994.
doi:10.1364/OL.19.000780

2. Klar, T. A., et al., "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 15, 8206-8210, 2000.
doi:10.1073/pnas.97.15.8206

3. Westphal, V. and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Physical Review Letters, Vol. 94, 143903, 2005.
doi:10.1103/PhysRevLett.94.143903

4. Hell, S. W., "Toward fluorescence nanoscopy," Nature Biotechnology, Vol. 21, No. 11, 1347-1355, 2003.
doi:10.1038/nbt895

5. Hell, S. W. and M. Kroug, "Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit," Applied Physics B: Lasers and Optics, Vol. 60, 495-497, 1995.
doi:10.1007/BF01081333

6. Hell, S. W., S. Jakobs, and L. Kastrup, "Imaging and writing at the nanoscale with focused visible light through saturable optical transitions," Applied Physics A: Materials Science & Processing, Vol. 77, 859-860, 2003.
doi:10.1007/s00339-003-2292-4

7. Rust, M. J., M. Bates, and X. W. Zhuang, "Sub-diffraction-limit imaging by stochastic optical econstruction microscopy (STORM)," Nature Methods, Vol. 3, 793-795, 2006.
doi:10.1038/nmeth929

8. Betzig, E., et al., "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, No. 5793, 1642-1645, 2006.
doi:10.1126/science.1127344

9. Hess, S. T., T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophysical Journal, Vol. 91, No. 11, 4258-4272, 2006.
doi:10.1529/biophysj.106.091116

10. Dertinger, T., et al., "Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements," Chem. Phys. Chem., Vol. 8, No. 3, 433-443, 2007.
doi:10.1002/cphc.200600638

11. Hell, S. W., "Far-field optical nanoscopy," Science, Vol. 316, No. 5828, 1153-1158, 2007.
doi:10.1126/science.1137395

12. Willig, K. I., et al., "STED microscopy with continuous wave beams," Nature Methods, Vol. 4, No. 11, 915-918, 2007.
doi:10.1038/nmeth1108

13. Voloshinov, V. B., L. N. Magdich, and G. A. Knyazev, "Tunable acousto-optic filters with the multiple interaction of light and sound," Quantum Electronics, Vol. 35, No. 11, 1057-1063, 2005.
doi:10.1070/QE2005v035n11ABEH013035

14. Gottfert, F., et al., "Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20nm resolution," Biophysical Journal, Vol. 105, No. 1, L01-L03, 2013.
doi:10.1016/j.bpj.2013.05.029

15. Moffitt, J. R., C. Osseforth, and J. Michaelis, "Time-gating improves the spatial resolution of STED microscopy," Optics Express, Vol. 19, No. 5, 4242-4254, 2011.
doi:10.1364/OE.19.004242

16. Vicidomini, G., et al., "STED nanoscopy with time-gated detection: theoretical and experimental aspects," PLoS One,, Vol. 8, No. 1, e54421-1-e54421-12, 2013.
doi:10.1371/journal.pone.0054421

17. Wildanger, D., et al., "A STED microscope aligned by design," Optics Express, Vol. 17, No. 18, 16100-16110, 2009.
doi:10.1364/OE.17.016100

18. Reuss, M., J. Engelhardt, and S. W. Hell, "Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation," Optics Express, Vol. 18, No. 2, 1049-1058, 2010.
doi:10.1364/OE.18.001049

19. Bingen, P., et al., "Parallelized STED fluorescence nanoscop," Optics Express, Vol. 19, No. 24, 23716-23726, 2011.
doi:10.1364/OE.19.023716

20. Schreiber, F., Device and Method for Distributing Illumination Light and Detection Light in a Microscope, 2013.

21. Donnert, G., et al., "Two-color far-field fluorescence nanoscopy," Biophysical Journal, Vol. 92, No. 8, L67-L69, 2007.
doi:10.1529/biophysj.107.104497

22. Buckers, J., et al., "Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses," Optics Express, Vol. 19, No. 4, 3130-3143, 2011.
doi:10.1364/OE.19.003130

23. Salthouse, C. D., R. Weissleder, and U. Mahmood, "Development of a time domain fluorimeter for fluorescent lifetime multiplexing analysis," IEEE Transactions on Biomedical Circuits and Systems, Vol. 2, No. 3, 204-211, 2008.
doi:10.1109/TBCAS.2008.2003195

24. Demandolx, D. and J. Davoust, "Multicolour analysis and local image correlation in confocal microscopy," Journal of Microscopy-Oxford, Vol. 185, 21-36, 1997.
doi:10.1046/j.1365-2818.1997.1470704.x

25. Dickinson, M. E., et al., "Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy," Biotechniques, Vol. 31, No. 6, 1272, 2001.

26. Neher, R. A., et al., "Blind source separation techniques for the decomposition of multiply labeled fluorescence images," Biophys. J., Vol. 96, No. 9, 3791-3800, 2009.
doi:10.1016/j.bpj.2008.10.068


© Copyright 2014 EMW Publishing. All Rights Reserved