1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, 459-512, 1865 (First presented to the British Royal Society in 1864). Google Scholar
2. Heaviside, O., Electromagnetic Theory, Vol. 3, Cosimo, Inc., 2008.
3. Aharonov, Y. and D. Bohm, "Signifiance of electromagnetic potentials in the quantum theory," Physical Review, Vol. 115, No. 3, 485, 1959. Google Scholar
4. Gasiorowicz, S., Quantum Physics, John Wiley & Sons, 2007.
5. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions: Basic Processes and Applications, Wiley, New York, 1992.
6. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
7. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997.
8. Loudon, R., The Quantum Theory of Light, Oxford University Press, 2000.
9. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, 2005.
10. Fox, M., Quantum Optics: An Introduction, Vol. 15, Oxford University Press, 2006.
11. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, USA, 2014.
12. Manges, J. B. and Z. J. Cendes, "A generalized tree-cotree gauge for magnetic field computation," IEEE Transactions on Magnetics, Vol. 31, No. 3, 1342-1347, 1995. Google Scholar
13. Lee, S.-H. and J.-M. Jin, "Application of the tree-cotree splitting for improving matrix conditioning in the full-wave finite-element analysis of high-speed circuits," Microwave and Optical Technology Letters,, Vol. 50, No. 6, 1476-1481, 2008. Google Scholar
14. Wilton, D. R. and A. W. Glisson, "On improving the electric field integral equation at low frequencies," Proc. URSI Radio Sci. Meet. Dig., Vol. 24, 1981. Google Scholar
15. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 339-346, 1999. Google Scholar
16. Zhao, J.-S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1635-1645, 2000. Google Scholar
17. Nisbet, A., "Electromagnetic potentials in a heterogeneous non-conducting medium," Proc. R. Soc. Lond. A, Vol. 240, No. 1222, 375-381, Jun. 11, 1957. Google Scholar
18. Chawla, B. R., S. S. Rao, and H. Unz, "Potential equations for anisotropic inhomogeneous media," Proceedings of the IEEE, Vol. 55, No. 3, 421-422, 1967. Google Scholar
19. Geselowitz, D. B., "On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources," IEEE Transactions on Magnetics, Vol. 6, No. 2, 346-347, 1970. Google Scholar
20. Demerdash, N. A., F. A. Fouad, T. W. Nehl, and O. A. Mohammed, "Three dimensional finite element vector potential formulation of magnetic fields in electrical apparatus," IEEE Transactions on Power Apparatus and Systems, Vol. 8, 4104-4111, 1981. Google Scholar
21. Biro, O. and K. Preis, "On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents," IEEE Transactions on Magnetics, Vol. 25, No. 4, 3145-3159, 1989. Google Scholar
22. MacNeal, B. E., J. R. Brauer, and R. N. Coppolino, "A general finite element vector potential formulation of electromagnetics using a time-integrated electric scalar potential," IEEE Transactions on Magnetics, Vol. 26, No. 5, 1768-1770, 1990. Google Scholar
23. Dyczij-Edlinger, R. and O. Biro, "A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 1, 15-23, 1996. Google Scholar
24. Dyczij-Edlinger, R., G. Peng, and J.-F. Lee, "A fast vector-potential method using tangentially continuous vector finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 6, 863-868, 1998. Google Scholar
25. De Flaviis, F., M. G. Noro, R. E. Diaz, G. Franceschetti, and N. G. Alexopoulos, "A time-domain vector potential formulation for the solution of electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 8, No. 9, 310-312, 1998. Google Scholar
26. Biro, O., "Edge element formulations of eddy current problems," Computer Methods in Applied Mechanics and Engineering, Vol. 169, No. 3, 391-405, 1999. Google Scholar
27. De Doncker, P., "A volume/surface potential formulation of the method of moments applied to electromagnetic scattering," Engineering Analysis with Boundary Elements, Vol. 27, No. 4, 325-331, 2003. Google Scholar
28. Dular, P., J. Gyselinck, C. Geuzaine, N. Sadowski, and J. P. A. Bastos, "A 3-D magnetic vector potential formulation taking eddy currents in lamination stacks into account," IEEE Transactions on Magnetics, Vol. 39, No. 3, 1424-1427, 2003. Google Scholar
29. Zhu, , Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Vol. 28, John Wiley & Sons, 2006.
30. He, Y., J. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011. Google Scholar
31. Rodriguez, A. W., F. Capasso, and S. G. Johnson, "The Casimir effect in microstructured geometries," Nature Photonics, Vol. 5, No. 4, 211-221, 2011. Google Scholar
32. Atkins, P. R., Q. I. Dai, W. E. I. Sha, and W. C. Chew, "Casimir force for arbitrary objects using the argument principle and boundary element methods," Progress In Electromagnetics Research, Vol. 142, 615-624, 2013. Google Scholar
33. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley-VCH, Jul. 1998.
34. Harrington, R. F., Time-harmonic Electromagnetic Fields, 224, 1961.
35. Kong, J. A., Theory of Electromagnetic Waves, 348-1, Wiley-Interscience, New York, 1975.
36. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 111, John Wiley & Sons, 2012.
37. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," Journal of Computational Physics, Vol. 73, 325-348, 1987. Google Scholar
38. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 35, No. 3, 7-12, Jun. 1993. Google Scholar
39. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song Eds., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.
40. Chew, W. C., M.-S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2008.
41. Yang, K.-H., "The physics of gauge transformations," American Journal of Physics, Vol. 73, No. 8, 742-751, 2005. Google Scholar
42. Lee, S.-C., M. N. Vouvakis, and J.-F. Lee, "A nonoverlapping domain decomposition method with nonmatching grids for modeling large finite antenna arrays," J. Comp. Phys., Vol. 203, 1-21, Feb. 2005. Google Scholar
43. Chew, W. C., Waves and Fields in Inhomogeneous Media, Vol. 522, IEEE Press, New York, 1995 (First Published in 1990 by Van Nostrand Reinhold).
44. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Englewood Cliffs, NJ, 1991.
45. Sun, L., "An enhanced volume integral equation method and augmented equivalence principle algorithm for low frequency problems,", Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2010. Google Scholar
46. Ma, Z. H., "Fast methods for low frequency and static EM problems,", Ph.D. Thesis, The University of Hong Kong, 2013. Google Scholar
47. Atkins, P. R., "A study on computational electromagnetics problems with applications to Casimir force calculations,", Ph.D. Thesis, University of Illinois at Urbana-Champaign, 2013. Google Scholar
48. Galerkin, B. G., "Series solution of some problems of elastic equilibrium of rods and plates," Vestn. Inzh. Tekh., Vol. 19, 897-908, 1915. Google Scholar
49. Kravchuk, M. F., "Application of the method of moments to the solution of linear differential and integral equations," Ukrain. Akad, Nauk, Kiev, 1932. Google Scholar
50. Harringotn, R. F., Field Computation by Moment Method, Macmillan, NY, 1968.
51. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2398-2412, 2008. Google Scholar
52. Dai, Q. I., W. C. Chew, Y. H. Lo, and L. J. Jiang, "Differential forms motivated discretizations of differential and integral equations," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1223-1226, 2014. Google Scholar
53. Zhang, Y., T. J. Cui, W. C. Chew, and J.-S. Zhao, "Magnetic field integral equation at very low frequencies," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1864-1871, 2003. Google Scholar
54. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 11, 3594-3601, 2009. Google Scholar
55. aghjian, A. D., "Augmented electric and magnetic field integral equations," Radio Science, Vol. 16, No. 6, 987-1001, 1981. Google Scholar
56. Vico, F., L. Greengard, M. Ferrando, and Z. Gimbutas, "The decoupled potential integral equation for time-harmonic electromagnetic scattering," Mathematical Physics, arXiv: 1404.0749, 2014. Google Scholar
57. Dai, Q. I., Y. H. Lo, W. C. Chew, Y. G. Liu, and L. J. Jiang, "Generalized modal expansion and reduced modal representation of 3-D electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 783-793, 2014. Google Scholar