1. Chandrakasan, A. P., N. Verma, and D. C. Daly, "Ultralow-power electronics for biomedical applications," Annu. Rev. of Biomed. Eng., Vol. 10, No. 1, 247-274, August 2008.
doi:10.1146/annurev.bioeng.10.061807.160547 Google Scholar
2. Hochbaum, A. I., R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Vol. 451, No. 7175, 163-167, January 2008.
doi:10.1038/nature06381 Google Scholar
3. Dagdeviren, C., B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, B. Lu, R. Poston, Z. Khalpey, R. Ghaffari, Y. Huang, M. J. Slepian, and J. A. Rogers, "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm," Proc. Natl. Acad. Sci. U.S.A., Vol. 111, No. 5, 1927-1932, 2014.
doi:10.1073/pnas.1317233111 Google Scholar
4. Rapoport, B. I., J. T. Kedzierski, and R. Sarpeshkar, "A glucose fuel cell for implantable brain-machine interfaces," PloS One, Vol. 7, No. 6, e38436, 2012.
doi:10.1371/journal.pone.0038436 Google Scholar
5. Mercier, P. P., A. C. Lysaght, S. Bandyopadhyay, A. P. Chandrakasan, and K. M. Stankovic, "Energy extraction from the biologic battery in the inner ear," Nat. Biotechnol., Vol. 30, No. 12, 1240-1243, 2012.
doi:10.1038/nbt.2394 Google Scholar
6. Bashirullah, R., "Wireless implants," IEEE Microw. Mag., Vol. 11, No. 7, 2010.
doi:10.1109/MMM.2010.938579 Google Scholar
7. Chow, E. Y., M. M. Morris, and P. P. Irazoqui, "Implantable RF medical devices: The benefits of high-speed communication and much greater communication distances in biomedical applications," IEEE Microw. Mag., Vol. 14, No. 4, 64-73, 2013.
doi:10.1109/MMM.2013.2248586 Google Scholar
8. Ho, J. S., S. Kim, and A. S. Y. Poon, "Midfield wireless powering for implantable systems," Proc. IEEE, 1369-1378, 2013.
doi:10.1109/JPROC.2013.2251851 Google Scholar
9. Schuder, J. C., H. E. Stephenson, Jr., and J. F. Townsend, "High-level electromagnetic energy transfer through a closed chest wall," IRE Intl. Conv. Rec., Vol. 9, 119-126, 1961. Google Scholar
10. Schuder, J. C., H. E. Stephenson, and J. F. Townsend, "Energy transfer into a closed chest by means of stationary coupling coils and a portable high-power oscillator," ASAIO Trans., Vol. 7, 327-331, 1961. Google Scholar
11. Schuder, J. C., "Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960," Artif. Organs, Vol. 26, No. 11, 909-915, 2002.
doi:10.1046/j.1525-1594.2002.07130.x Google Scholar
12. Flack, F. C., E. D. James, and D. M. Schlapp, "Mutual inductance of air-cored coils: Effect on design of radio-frequency coupled implants," Med. Biol. Eng., Vol. 9, 79-85, 1971.
doi:10.1007/BF02474736 Google Scholar
13. Ko, W. H., S. P. Liang, and C. D. F. Fung, "Design of radio-frequency powered coils for implant instruments," Med. Biol. Eng. Comput., Vol. 15, 634-640, November 1977. Google Scholar
14. Heetderks, W. J., "RF powering of millimeter- and submillimeter-sized neural prosthetic implants," IEEE Trans. Biomed. Eng., Vol. 35, No. 5, 323-327, 1988.
doi:10.1109/10.1388 Google Scholar
15. Jow, U.-M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130 Google Scholar
16. RamRakhyani, A., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 1, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782 Google Scholar
17. Kiani, M., U.-M. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431 Google Scholar
18. Waters, B. H., A. P. Sample, P. Bonde, and J. R. Smith, "Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (free-D) system," Proc. of the IEEE, Vol. 100, No. 1, 138-149, 2012.
doi:10.1109/JPROC.2011.2165309 Google Scholar
19. Sample, A. P., B. H. Waters, S. T. Wisdom, and J. R. Smith, "Enabling seamless wireless power delivery in dynamic environments," Proc. IEEE, Vol. 101, No. 6, 1343-1358, 2013.
doi:10.1109/JPROC.2013.2252453 Google Scholar
20. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 137, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254 Google Scholar
21. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Trans. Antennas Propag., Vol. 58, No. 11, 3442-3449, 2010.
doi:10.1109/TAP.2010.2071351 Google Scholar
22. Poon, A. S. Y., S. O’Driscoll, and T. H. Meng, "Optimal frequency for wireless power transmission over dispersive tissue," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1739-1749, 2010.
doi:10.1109/TAP.2010.2044310 Google Scholar
23. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Techn., Vol. 13, No. 2, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964 Google Scholar
24. Yu, X., S. Sandhu, S. Beiker, R. Sassoon, and S. Fan, "Wireless energy transfer with the presence of metallic planes," Appl. Phys. Lett., Vol. 99, No. 21, 214102, 2011.
doi:10.1063/1.3663576 Google Scholar
25. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 59, No. 8, August 2012. Google Scholar
26. Kim, S., J. S. Ho, and A. S. Y. Poon, "Midfield wireless powering of subwavelength autonomous devices," Phys. Rev. Lett., Vol. 110, No. 20, 203905, May 2013.
doi:10.1103/PhysRevLett.110.203905 Google Scholar
27. Poor, V., "Robust matched filters," IEEE Trans. Inf. Theory, Vol. 29, No. 5, 677-687, September 1983.
doi:10.1109/TIT.1983.1056734 Google Scholar
28. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, Piscataway, NJ, 1995.
29. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., No. 41, 2271-2293, October 1996. Google Scholar
30. Kim, S., J. S. Ho, L. Y. Chen, and A. S. Y. Poon, "Wireless power transfer to a cardiac implant," Appl. Phys. Lett., Vol. 101, No. 7, 073701, 2012.
doi:10.1063/1.4745600 Google Scholar
31. Ho, J. S., A. J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R. E. Beygui, and A. S. Y. Poon, "Wireless power transfer to deep-tissue microimplants," Proc. Natl. Acad. Sci. U.S.A., May 2014. Google Scholar
32. Wong, L. S. Y., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, "A very low-power cmos mixed-signal ic for implantable pacemaker applications," IEEE J. Solid-State Circuits, Vol. 39, No. 12, 2446-2456, December 2004.
doi:10.1109/JSSC.2004.837027 Google Scholar
33. Pfeiffer, C. and A. Grbic, "Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, No. 19, 197401, May 2013.
doi:10.1103/PhysRevLett.110.197401 Google Scholar
34. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, No. 2, 139-150, January 2014.
doi:10.1038/nmat3839 Google Scholar