1. Atkins, P. R., "A study on computational electromagnetics problems with applications to Casimir force calculations,", Ph.D. thesis, University of Illinois at Urbana-Champaign, 2013.
doi:10.2528/PIER13082105 Google Scholar
2. Atkins, P. R., Q. I. Dai, W. E. I. Sha, and W. C. Chew, "Casimir force for arbitrary objects using the argument principle and boundary element methods," Progress In Electromagnetics Research, Vol. 142, 615-624, 2013.
doi:10.1016/S0370-1573(01)00015-1 Google Scholar
3. Bordag, M., U. Mohideen, and V. M. Mostepanenko, "New developments in the Casimir effect," Phys. Rep., Vol. 353, 1-205, 2001. Google Scholar
4. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Berlin, 2001.
doi:10.1109/8.237620
5. Chew, W. C. and C. C. Lu, "The use of Huygens equivalence principle for solving the volume integral equation of scattering," IEEE Trans. Antennas Propag., Vol. 41, No. 7, 897-904, 1993.
doi:10.1109/8.384194 Google Scholar
6. Chew, W. C. and C. C. Lu, "The use of Huygens equivalence principle for solving 3-d volume integral equation of scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 5, 500-507, 1995. Google Scholar
7. Fraysse, V., L. Giraud, S. Gratton, and J. Langou, "A set of GMRES routines for real and complex arithmetics on high performance computers,", Technical report, CERFACS Technical Report TR/PA/03/3, 2003. Google Scholar
8. Lambrecht, A. and V. N. Marachevsky, "New geometries in the Casimir effect: Dielectric gratings," J. Phys. Conf. Ser., Vol. 161, 1-8, 2009.
doi:10.1137/S0895479895281484 Google Scholar
9. Lehoucq, R. B. and D. C. Sorensen, "Deflation techniques for an implicitly restarted Arnoldi iteration," SIAM. J. Matrix Anal. & Appl., Vol. 17, No. 4, 789-821, 1996. Google Scholar
10. Lehoucq, R. B., D. C. Sorensen, and C. Yang, "ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," SIAM, 1998. Google Scholar
11. Li, M. K., "Studies on applying the equivalence principle algorithm on multiscale problems," Ph.D. thesis, University of Illinois at Urbana-Champaign , 2007.
doi:10.1109/TAP.2006.888453 Google Scholar
12. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 130-138, 2007.
doi:10.1109/TAP.2008.926785 Google Scholar
13. Li, M. K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2389-2397, 2008.
doi:10.1002/mop.21777 Google Scholar
14. Li, M. K., W. C. Chew, and Li J. Jiang, "A domain decomposition scheme based on equivalence theorem," Microwave and Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, 2006. Google Scholar
15. Ma, Z. H., "Fast methods for low frequency and static EM problems,", Ph.D. thesis, The University of Hong Kong, 2013.
doi:10.1103/PhysRevD.80.085021 Google Scholar
16. Rahi, S. J., T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, "Scattering theory approach to electrodynamic Casimir forces," Phys. Rev. D, Vol. 80, 085021, 2009.
doi:10.1109/TAP.1982.1142818 Google Scholar
17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982. Google Scholar
18. Homer Reid, M. T., A. W. Rodriguez, J. White, and S. G. Johnson, "Efficient computation of Casimir interactions between arbitrary 3d objects," Phys. Rev. Lett., Vol. 103, 2009. Google Scholar
19. Homer Reid, M. T., J. White, and S. G. Johnson, "Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties," Phys. Rev. A, Vol. 84, 2011.
doi:10.1137/0907058 Google Scholar
20. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 856-869, 1986. Google Scholar
21. Sun, L., "An enhanced volume integral equation method and augmented equivalence principle algorithm for low frequency problems,", Ph.D. thesis, University of Illinois at Urbana-Champaign, 2010. Google Scholar