Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 150 > pp. 163-182


By I. V. Andronov and R. Mittra

Full Article PDF (911 KB)

The asymptotic approach to the problem of high-frequency diffraction by elongated bodies is discussed in this work. The classical expansion is shown to require the frequencies to be too high for it to be applicable. Attempts to improve the approximating properties of the asymptotic methods are discussed. It is shown that effective approximations appear under the supposition that the squared transverse dimension of the body is proportional to its longitudinal size measured in wavelengths. This is referred to herein as the case of strongly elongated body and is examined in detail. It is assumed that the body has a rotational symmetry and can be well approximated by a spheroid. The cases of axial incidence and that of incidence at a grazing angle to the axis are considered. Both the asymptotics of the induced currents on the surface and of the far field amplitude are developed. Comparison with numerical results for a set of test problems shows that the leading terms of the new asymptotics provide good approximation in a uniform manner with respect to the rate of elongation. Some effects typical for scattering by elongated bodies are discussed.

I. V. Andronov and R. Mittra, "Recent Advances in the Asymptotic Theory of Diffraction by Elongated Bodies (Invited Paper)," Progress In Electromagnetics Research, Vol. 150, 163-182, 2015.

1. Fock, V. A., "The distribution of currents induced by a pane wave on the surface of a conductor," Journ. of Phys. of the USSR, Vol. 10, No. 2, 130-136, 1946.

2. Hönl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961.

3. King, R. W. P. and T. T.Wu, The Scattering and Diffraction of Waves, Harward University Press, Cambridge, Massachusetts, 1959.

4. Belkina, M. G. and L. A.Wainstein, "The characteristics of radiation of spherical surface antennas," Diffraction of Electromagnetic Waves by Some Bodies of Revolution, 57-125, Sovetskoe Radio, Moscow, 1957 (in Russian).

5. Belkina, M. G., "The characteristics of radiation of a prolate ellipsoid of revolution," Diffraction of Electromagnetic Waves by Some Bodies of Revolution, 126-147, Sovetskoe Radio, Moscow, 1957 (in Russian).

6. Hong, S., "Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature," Journal of Mathematical Physics, Vol. 8, No. 6, 1223-1232, 1967.

7. Ivanov, V. I., "Computation of corrections to the Fock asymptotics for the wave field near a circular cylinder and a sphere," J. of Soviet Mathematics, Vol. 20, No. 1, 1812-1817, 1982.

8. Andronov, I. V., D. P. Bouche, and M. Duruflé, "High-frequency diffraction of plane electromagnetic wave by an elongated spheroid," IEEE Transactions on Antennas and Propag., Vol. 60, No. 11, 5286-5295, 2012.

9. Senior, T. B. A., "Disk scattering at edge-on incidence," IEEE Transactions on Antennas and Propag., Vol. 17, No. 6, 751-756, 1969.

10. Senior, T. B. A., "Loop excitation of traveling waves," Can. J. Phys., Vol. 40, 1736, 1962.

11. Bird, T. S., "Comparison of asymptotic solutions for the surface field excited by a magnetic dipole on a cylinder," IEEE Transactions on Antennas and Propag., Vol. 32, No. 11, 1237-1244, 1984.

12. Andronov, I. V. and D. Bouche, "Asymptotic of creeping waves on a strongly prolate body," Ann. Télécommun., Vol. 49, No. 3-4, 205-210, 1994.

13. Molinet, F., I. V. Andronov, and D. Bouche, Asymptotic and Hybrid Methods in Electromagnetics, IEE, London, 2005.

14. Engineer, J. C., J. R. King, and R. H. Tew, "Diffraction by slender bodies," Eur. J. Appl. Math., Vol. 9, No. 2, 129-158, 1998.

15. Komarov, I. V., L. I. Ponomarev, and S. Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, Nauka, Moscow, 1976 (in Russian).

16. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, New York, 1964.

17. Andronov, I. V., "The currents induced by a high-frequency wave incident at a small angle to the axis of strongly elongated spheroid," Progress In Electromagnetics Research M, Vol. 28, 273-287, 2013.

18. Thompson, I. J. and A. R. Barnett, "COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments," Computer Physics Communications, Vol. 36, 363-372, 1985.

19. Andronov, I. V. and D. Bouche, "Forward and backward waves in high-frequency diffraction by an elongated spheroid," Progress In Electromagnetics Research B, Vol. 29, 209-231, 2011.

20. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, (International Series of Monographs on Electromagnetic Waves), Chapter 3, Frankfurt, Pergamon Press, 1965.

21. Andronov, I. V., "High frequency asymptotics of electromagnetic field on a strongly elongated spheroid," PIERS Online, Vol. 5, No. 6, 536-540, 2009.

22. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Review, Vol. 56, No. 1, 99-107, 1939.

23. Andronov, I. V., "High-frequency acoustic scattering from prolate spheroids with high aspect ratio," Journal of the Acoustical Soc. Am., Vol. 134, No. 6, 4307-4316, 2013.

24. Andronov, I. V. and D. A. Shevnin, "High-frequency scattering by perfectly conducting prolate spheroids," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 11, 1388-1396, 2014.

25. Andronov, I. V., "Diffraction of spherical waves on large strongly elongated spheroids," Acta Acoustica United with Acoustica, Vol. 99, No. 2, 177-182, 2013.

26. Andronov, I. V., "Calculation of diffraction by strongly elongated bodies of revolution," Acoustical Physics, Vol. 58, No. 1, 22-29, 2012.

27. Andronov, I. V. and D. Bouche, "Diffraction by a narrow circular cone as by a strongly elongated body," Journal of Mathematical Sciences, Vol. 185, No. 4, 517-522, 2012.

28. Andronov, I. V., "Diffraction by elliptic cylinder with strongly elongated cross-section," Acoustical Physics, Vol. 60, No. 3, 237-244, 2014.

29. Andronov, I. V. and R. Mittra, "Asymptotic theory of diffraction by elongated bodies - From V. A. Fock to present," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1-16, 2014.

© Copyright 2014 EMW Publishing. All Rights Reserved