PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 151 > pp. 151-167

LOSSY SPHERICAL CAVITY RESONATORS FOR STRESS-TESTING ARBITRARY 3D EIGENMODE SOLVERS

By S. Papantonis and S. Lucyszyn

Full Article PDF (1,444 KB)

Abstract:
A lossy metal-wall cavity resonator that extends well beyond perturbation theory limits is studied. An exact analytical solution is employed for the spherical cavity resonator, having walls transformed from being a perfect electrical conductor (PEC) to free space. This model then acts as an ideal benchmark reference standard. A plane-wave approximation is then derived. Independent full-wave numerical modeling of the spherical cavity resonator is undertaken using eigenmode solvers within two well-known commercial, industry-standard, simulation software packages (HFSS™ and COMSOL). It has been found that the plane-wave approximation model accurately characterizes the results generated by these solvers when equivalent finite conductivity boundary (FCB) and layered impedance boundary (LIB) conditions are used. However, the impedance boundary (IB) condition is accurately characterized by the exact model, but the precise value of complex wave impedance at the wall boundary for the specific resonance mode must first be known a priori. Our stress-testing results have profound implications on the usefulness of these commercial solvers for accurately predicting eigenfrequencies of lossy arbitrary 3D structures. For completeness, an exact series RLC equivalent circuit model is given specifically for a spherical cavity resonator having arbitrary wall losses, resulting in the derivation of an extended perturbation model.

Citation:
S. Papantonis and S. Lucyszyn, "Lossy spherical cavity resonators for stress-testing arbitrary 3D eigenmode solvers," Progress In Electromagnetics Research, Vol. 151, 151-167, 2015.
doi:10.2528/PIER15031702
http://www.jpier.org/pier/pier.php?paper=15031702

References:
1. Hansen, W. W., "A type of electrical resonator," J. Appl. Phys., Vol. 9, No. 10, 654-663, Oct. 1938.
doi:10.1063/1.1710371

2. Barrow, W. L. and W. W. Mieher, "Natural oscillations of electrical cavity resonators," IRE Proc., Vol. 28, No. 4, 184-191, Apr. 1940.
doi:10.1109/JRPROC.1940.228082

3. Gallagher, S. and W. J. Gallagher, "The spherical resonator," IEEE Trans. Nucl. Sci., Vol. 32, No. 5, 2980-2982, Oct. 1985.
doi:10.1109/TNS.1985.4334247

4. Nepal, N., Y. K. Kim, Y. S. Bae, I. S. Ko, M. H. Cho, and W. Namkung, "Design study on standing-wave linear accelerator," IEEE Proc. PAC 2001, Vol. 4, 2802-2804, Jun. 2001.

5. Shvets, G., "Optical polarizer/isolator based on a rectangular waveguide with helical grooves," Appl. Phys. Lett., Vol. 89, No. 14, 141127, Oct. 2006.
doi:10.1063/1.2355466

6. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

7. Otter, W. J., S. M. Hanham, N. M. Ridler, G. Marino, N. Klein, and S. Lucyszyn, "100 GHz ultra-high Q-factor photonic crystal resonators," Sensors and Actuators A: Physical, Vol. 217, 151-159, Sep. 2014.
doi:10.1016/j.sna.2014.06.022

8. Papantonis, S., N. M. Ridler, and S. Lucyszyn, "Rectangular waveguide enabling technology using holey surfaces and wire media metamaterials," Sensors and Actuators A: Physical, Vol. 209, 1-8, Mar. 2014.
doi:10.1016/j.sna.2014.01.005

9. Maier, S. A., Plasmonics: Fundamentals and Applications, Springe, 2007.

10. Papantonis, S., S. Lucyszyn, and E. Shamonina, "Dispersion effects in Fakir’s bed of nails metamaterial waveguides," J. Appl. Phys., Vol. 115, No. 5, 054903, Feb. 2014.
doi:10.1063/1.4863461

11. Choi, J. Y. and S. Lucyszyn, "HFSS modelling anomalies with electrically thin-walled metal-pipe rectangular waveguide simulations," 10th IEEE High Frequency Postgraduate Student Colloquium (10th HF-PgC) Digest, 95-98, Leeds, Sep. 2005.

12. Episkopou, E., S. Papantonis, W. J. Otter, and S. Lucyszyn, "Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures," IEEE Trans. Terahertz Sci. Technol., Vol. 2, No. 4, 513-524, Sep. 2012.
doi:10.1109/TTHZ.2012.2208456

13. Slater, J. C., "Microwave electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, Oct. 1946.
doi:10.1103/RevModPhys.18.441

14. Hadidi, A. and M. Hamid, "Analysis of a cylindrical cavity resonator with absorbing wall," Int. J. Electronics, Vol. 63, No. 3, 435-442, Mar. 1987.
doi:10.1080/00207218708939148

15. Gastine, M., L. Courtois, and J. L. Dormain, "Electromagnetic resonances of free dielectric spheres," IEEE Trans. Microw. Theory Techn., Vol. 15, No. 12, 694-700, Dec. 1967.
doi:10.1109/TMTT.1967.1126568

16. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press, 1991.

17. Lucyszyn, S. and Y. Zhou, "Engineering approach to modelling frequency dispersion within normal metals at room temperature for THz applications," Progress In Electromagnetics Research, Vol. 101, 257-275, 2010.
doi:10.2528/PIER09121506

18. Zhou, Y. and S. Lucyszyn, "Modelling of reconfigurable terahertz integrated architecture (RETINA) SIW structures," Progress In Electromagnetics Research, Vol. 105, 71-92, 2010.
doi:10.2528/PIER10041806

19. Jiang, J., R. Saito, A. Grueneis, G. Dresselhaus, and M. S. Dresselhaus, "Electron-photon interaction and relaxation time in graphite," Chem. Phys. Lett., Vol. 392, 383-389, 2004.
doi:10.1016/j.cplett.2004.05.097

20., , http://www.ansys.com/products/hf/hfss/.

21., , http://www.comsol.com/.

22. Pozar, D. M., Microwave Engineering, 2nd Edition, Wiley, 1998.

23. Zhou, Y. and S. Lucyszyn, "HFSSTM modelling anomalies with THz metal-pipe rectangular waveguide structures at room temperature," PIERS Online, Vol. 5, No. 3, 201-211, 2009.
doi:10.2529/PIERS080907072308

24. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd Edition, Wiley, 1994.

25. Montgomery, C. G., R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, Chapter 7, McGraw-Hill, 1948.


© Copyright 2014 EMW Publishing. All Rights Reserved