PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 152 > pp. 77-93

SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

By A. Desmal and H. Bagci

Full Article PDF (908 KB)

Abstract:
A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured'' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

Citation:
A. Desmal and H. Bagci, "Sparse Electromagnetic Imaging Using Nonlinear Landweber Iterations," Progress In Electromagnetics Research, Vol. 152, 77-93, 2015.
doi:10.2528/PIER15052806
http://www.jpier.org/PIER/pier.php?paper=15052806

References:
1. Pastorino, M., Microwave Imaging, Wiley, 2010.
doi:10.1002/9780470602492

2. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Inverse Acoustic and Electromagnetic Scattering Theory, Springer, 2012.

3. Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2013.

4. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

5. Devaney, A. J., Mathematical Foundations of Imaging, Tomography and Wavefield Inversion, Cambridge University Press, 2012.
doi:10.1017/CBO9781139047838

6. Aftanas, M., "Through-wall imaging with UWB radar system,", Department of Electronics and Multimedia Communications, Technical University of Kosice, 2009.

7. Takagi, T., J. R. Bowler, Y. Yoshida, and Eds., Electromagnetic Nondestructive Evaluation, IOS Press, 1997.

8. Caorsi, S., A. Massa, and M. Pastorino, "A crack identification microwave procedure based on a genetic algorithm for nondestructive testing," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1812-1820, 2001.
doi:10.1109/8.982464

9. Zorgati, R., B. Duchene, D. Lesselier, and F. Pons, "Eddy current testing of anomalies in conductive materials. I. Qualitative imaging via diffraction tomography techniques," IEEE Trans. Magn., Vol. 27, No. 6, 4416-4437, 1991.
doi:10.1109/20.278657

10. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902

11. Cui, T. J., W. C. Chew, A. A. Aydiner, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242

12. Zhang, W., "Two-dimensional microwave tomographic algorithm for radar imaging through multilayered media," Progress In Electromagnetics Research, Vol. 144, 261-270, 2014.
doi:10.2528/PIER13090305

13. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proc. IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

14. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, 1985.

15. Rajan, S. D. and G. V. Frisk, "A comparison between the Born and Rytov approximations for the inverse backscattering," Geophy., Vol. 54, 864-871, 1989.
doi:10.1190/1.1442715

16. Zhang, Z. Q. and Q. H. Liu, "Two nonlinear inverse methods for electromagnetic induction measurements," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1331-1339, 2001.
doi:10.1109/36.927456

17. Estatico, C., G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, "A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data," Inverse Problems, Vol. 21, No. 6, S81, 2005.
doi:10.1088/0266-5611/21/6/S07

18. Wang, Y. M. and W. C. Chew, "An iterative solution of the two-dimensional electromagnetic inverse scattering problem," Int. J. of Imaging Syst. Technol., Vol. 1, 100-108, 1989.
doi:10.1002/ima.1850010111

19. Desmal, A. and H. Bagci, "Shrinkage-thresholding enhanced Born iterative method for solving 2D inverse electromagnetic scattering problem," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3878-3884, 2014.
doi:10.1109/TAP.2014.2321144

20. Bagci, H., R. Raich, A. E. Hero, and E. Michielssen, "Sparsity-regularized Born iterations for electromagnetic inverse scattering," Proc. IEEE Int. Symp. Antennas and Propagation, 1-4, 2008.

21. Desmal, A. and H. Bagci, "A preconditioned inexact Newton method for nonlinear sparse electromagnetic imaging," IEEE Geosci. Remote Sens. Lett., Vol. 12, No. 3, 532-536, 2015.
doi:10.1109/LGRS.2014.2349935

22. Bozza, G. and M. Pastorino, "An inexact Newton-based approach to microwave imaging within the contrast source formulation," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1122-1132, 2009.
doi:10.1109/TAP.2009.2015820

23. Estatico, C., M. Pastorino, and A. Randazzo, "A novel microwave imaging approach based on regularization in Banach spaces," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3373-3381, 2012.
doi:10.1109/TAP.2012.2196925

24. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method," IEEE Trans. Med. Imag., Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

25. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338

26. Abubakar, A., T. M. Habashy, and P. M. Van den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205

27. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706

28. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

29. Abubakar, P. M., "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.

30. Li, Y. and W. Yang, "Image reconstruction by nonlinear Landweber iteration for complicated distributions," Meas. Sci. Technol., Vol. 19, No. 9, 094014, 2008.
doi:10.1088/0957-0233/19/9/094014

31. Hettlich, F., "The Landweber iteration applied to inverse conductive scattering problems," Inverse Problems, Vol. 14, No. 4, 931-947, 1998.
doi:10.1088/0266-5611/14/4/011

32. Fornasier, M., Theoretical Foundations and Numerical Methods for Sparse Recovery, Walter de Gruyter, 2010.
doi:10.1515/9783110226157

33. Daubechies, I., M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math., Vol. 57, No. 11, 1413-1457, 2004.
doi:10.1002/cpa.20042

34. Wei, S. J., X. L. Zhang, J. Shi, and K. F. Liao, "Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study," Progress In Electromagnetics Research, Vol. 135, 161-181, 2013.
doi:10.2528/PIER12082305

35. Landweber, L., "An iteration formula for Fredholm integral equations of the first kind," Amer. J. Math, Vol. 73, No. 3, 615-624, 1951.
doi:10.2307/2372313

36. Hanke, M., A. Neubauer, and O. Scherzer, "A convergence analysis of the Landweber iteration for nonlinear ill-posed problems," Numerische Mathematik, Vol. 72, No. 1, 21-37, 1995.
doi:10.1007/s002110050158

37. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

38. Blumensath, T. and M. E. Davies, "Iterative hard thresholding for compressed sensing," IEEE Trans. Antennas Propag., Vol. 27, No. 3, 265-274, 2009.

39. Wright, S. J., R. D. Nowak, and M. A. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., Vol. 57, No. 7, 2479-2493, 2009.
doi:10.1109/TSP.2009.2016892

40. Kaltenbacher, B., A. Neubauer, and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-posed Problems, Walter de Gruyter, 2008.
doi:10.1515/9783110208276

41. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

42. Bloemenkamp, R. F., A. Abubakar, and P. M. van den Berg, "Inversion of experimental multi-frequency data using the contrast source inversion method," Inverse Problems, Vol. 17, No. 6, 1611-1622, 2001.
doi:10.1088/0266-5611/17/6/305


© Copyright 2014 EMW Publishing. All Rights Reserved