PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 154 > pp. 171-180

MULTI-MODE BROADBAND POWER TRANSFER THROUGH A WIRE MEDIUM SLAB (INVITED PAPER)

By D. Vovchuk, S. Kosulnikov, I. S. Nefedov, S. A. Tretyakov, and C. Simovski

Full Article PDF (486 KB)

Abstract:
It is known that slabs of wire media - dense arrays of thin conducting wires - can transport electromagnetic energy of evanescent plane waves over the slab thickness. This phenomenon was successfully used in superlenses and endoscopes. However, in the known configurations the effective energy transfer takes place only at the Fabry-Perot (thickness) resonances of the slab, making broadband power transfer impossible. In this paper we experimentally demonstrate that power transfer by a wire medium slab can be very broadband, whereas the Fabry-Perot resonances are damped, provided that the wires of the wire medium slab extend into the power-emitting body. As a testbed system we have used two rectangular waveguides and demonstrated that a properly designed and positioned wire medium slab transfers modes of any polarization from the input to the output waveguides. This study is relevant to emerging applications where broadband transport of reactive-field energy is required, especially in enhancing and controlling radiative heat flows in thermophotovoltaic systems.

Citation:
D. Vovchuk, S. Kosulnikov, I. S. Nefedov, S. A. Tretyakov, and C. Simovski, "Multi-mode broadband power transfer through a wire medium slab (invited paper)," Progress In Electromagnetics Research, Vol. 154, 171-180, 2015.
doi:10.2528/PIER15111908
http://www.jpier.org/pier/pier.php?paper=15111908

References:
1. Simovski, C. R., P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, "Wire metamaterials: Physics and applications," Adv. Mater., Vol. 24, 4229-4248, 2012.
doi:10.1002/adma.201200931

2. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Phys. Rev. B, Vol. 67, 113103(1-4), 2003.
doi:10.1103/PhysRevB.67.113103

3. Nefedov, I. S. and A. J. Viitanen, "Wire media," Metamaterial Handbook. Vol. 1: Theory and Phenomena of Metamaterials, Chapter 15-1, CRC Press, Boca Raton, 2009.

4. Simovski, C. R. and P. A. Belov, "Low-frequency spatial dispersion in wire media," Phys. Rev. E, Vol. 70, 046616(1-8), 2004.

5. Belov, P. A., C. R. Simovski, and P. Ikonen, "Canalization of subwavelength images by electromagnetic crystals," Phys. Rev. B, Vol. 71, 193105(1-4), 2005.
doi:10.1103/PhysRevB.71.193105

6. Belov, P. A., Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, "Experimental study of the subwavelength imaging by a wire medium slab," Appl. Phys. Lett., Vol. 89, 262109, 2006.
doi:10.1063/1.2424557

7. Belov, P. A., Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, "Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range," Phys. Rev. B, Vol. 77, 193108, 2008.
doi:10.1103/PhysRevB.77.193108

8. Shvets, G., S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett., Vol. 99, 053903, 2007.
doi:10.1103/PhysRevLett.99.053903

9. Zhao, Y., G. Palicaras, P. A. Belov, R. F. Dubrovka, C. R. Simovski, Y. Hao, and C. G. Parini, "Magnification of subwavelength field distributions using a tapered array of metallic wires with planar interfaces and an embedded dielectric phase compensator," New J. Phys., Vol. 12, 103045, 2010.
doi:10.1088/1367-2630/12/10/103045

10. Nefedov, I. S. and C. R. Simovski, "Giant radiation heat transfer through micron gaps," Phys. Rev. B, Vol. 84, 195459, 2011.
doi:10.1103/PhysRevB.84.195459

11. Maslovski, S. I., C. R. Simovski, and S. A. Tretyakov, "Equivalent circuit model of radiative heat transfer," Phys. Rev. B, Vol. 87, 155124, 2013.
doi:10.1103/PhysRevB.87.155124

12. Mirmoosa, M. S., F. Ruting, I. S. Nefedov, and C. R. Simovski, "Effective-medium model of wire metamaterials in the problems of radiative heat transfer," J. Appl. Phys., Vol. 115, 234905, 2014.
doi:10.1063/1.4883239

13. Simovski, C., S. Maslovski, I. Nefedov, and S. Tretyakov, "Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications," Opt. Express, Vol. 21, 14988-15013, 2013.
doi:10.1364/OE.21.014988

14. Guo, Y., C. L. Cortes, S. Molesky, and Z. Jacob, "Broadband super-Planckian thermal emission from hyperbolic metamaterials," Appl. Phys. Lett., Vol. 101, 131106, 2012.
doi:10.1063/1.4754616

15. Pendry, J. B., "Radiative exchange of heat between nanostructures," J. Phys.: Condens. Matter, Vol. 11, 6621, 1999.
doi:10.1088/0953-8984/11/35/301

16. Chang, J.-Y., Y. Yang, and L. Wang, "Tungsten nanowire-based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications," Int. J. Heat Mass Tran., Vol. 87, 237, 2015.
doi:10.1016/j.ijheatmasstransfer.2015.03.087

17. Ilic, O., M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, "Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems," Opt. Express, Vol. 20, A366-A384, 2012.
doi:10.1364/OE.20.00A366

18. Mirmoosa, M. S. and C. Simovski, "Micron-gap thermophotovoltaic systems enhanced by nanowires," Photon. Nanostruct. Fundam. Appl., Vol. 13, 20-30, 2014.
doi:10.1016/j.photonics.2014.10.007

19. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instr. Meas., Vol. 48, 1131, 1999.
doi:10.1109/19.816127

20. Hanson, G. W., M. G. Silveirinha, P. Burghignoli, and A. B. Yakovlev, "Non-local susceptibility of the wire medium in the spatial domain considering material boundaries," New J. Phys., Vol. 15, 083018, 2013.
doi:10.1088/1367-2630/15/8/083018

21. Belov, P. A. and M. G. Silveirinha, "Resolution of subwavelength transmission devices formed by a wire medium," Phys. Rev. E, Vol. 73, 056607, 2006.
doi:10.1103/PhysRevE.73.056607

22. Radu, X., D. Garray, and C. Craeye, "Toward a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

23. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Application, Gordon and Breach Science Publishers, Amsterdam, 2001.


© Copyright 2014 EMW Publishing. All Rights Reserved