PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 154 > pp. 163-170

QUANTUM MECHANICAL MODELING OF ELECTRON-PHOTON INTERACTIONS IN NANOSCALE DEVICES (Invited Paper)

By R. Wang, Y. Zhang, G. H. Chen, and C. Y. Yam

Full Article PDF (584 KB)

Abstract:
An efficient quantum mechanical approach is formulated to model electron-photon interactions in nanoscale devices. Based on nonequilibrium Green's function formalism, electron-photon interactions and open boundaries in the nanoscale systems are taken into account in terms of self-energies. By separating different components in the electron-photon interactions, optical absorption and emission processes in the devices can be analyzed, and the method allows studies of different optoelectronic devices. In conjunction with density-functional tight-binding method, photo-induced current and other optical properties of nanoscale devices can be simulated without relying on empirical parameters. To demonstrate our approach, numerical studies of gallium nitride nanowire solar cells of realistic sizes are presented.

Citation:
R. Wang, Y. Zhang, G. H. Chen, and C. Y. Yam, "Quantum Mechanical Modeling of Electron-Photon Interactions in Nanoscale Devices (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 163-170, 2015.
doi:10.2528/PIER15112903
http://www.jpier.org/PIER/pier.php?paper=15112903

References:
1. Meng, L. Y., Y. Shang, Q. K. Li, Y. F. Li, X. W. Zhan, Z. G. Shuai, R. G. E. Kimber, and A. B. Walker, "Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics," J. Phys. Chem. B, Vol. 114, No. 1, 36-41, 2010.
doi:10.1021/jp907167u

2. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of Polymer/fullerene bulk heterojunction solar cells," Phys. Rev. B, Vol. 72, No. 8, 085205, 2005.
doi:10.1103/PhysRevB.72.085205

3. Keldysh, L.-V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, 1018, 1965.

4. Meir, Y. and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett., Vol. 68, 2512, 1992.
doi:10.1103/PhysRevLett.68.2512

5. Jauho, A.-P., N. S. Wingreen, and Y. Meir, "Time-dependent transport in interacting and noninteracting resonant-tunneling systems," Phys. Rev. B, Vol. 50, No. 8, 5528, 1994.
doi:10.1103/PhysRevB.50.5528

6. Zheng, X., F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, "Time-dependent density-functional theory for open systems," Phys. Rev. B, Vol. 75, No. 19, 195127, 2007.
doi:10.1103/PhysRevB.75.195127

7. Kwok, Y. H., H. Xie, C. Y. Yam, X. Zheng, and G. H. Chen, "Time-dependent density functional theory quantum transport simulation in non-orthogonal basis," J. Chem. Phys., Vol. 139, No. 22, 224111, 2013.
doi:10.1063/1.4840655

8. Wang, R. L., X. Zheng, Y. H. Kwok, H. Xie, G. H. Chen, and C. Y. Yam, "Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions," J. Chem. Phys., Vol. 142, No. 14, 144112, 2015.
doi:10.1063/1.4917172

9. Henrickson, L. E., "Nonequilibrium photocurrent modeling in resonant tunneling photodetectors," J. Appl. Phys., Vol. 91, No. 10, 6273-6281, 2002.
doi:10.1063/1.1473677

10. Galperin, M. and A. Nitzan, "Current-induced light emission and light-induced current in molecular-tunneling junctions," Phys. Rev. Lett., Vol. 95, 206802, 2005.
doi:10.1103/PhysRevLett.95.206802

11. Galperin, M. and A. Nitzan, "Molecular optoelectronics: The interaction of molecular conduction junctions with light," Phys. Chem., Vol. 14, 9421, 2012.

12. Zhang, Y., L. Y. Meng, C. Y. Yam, and G. H. Chen, "Quantum-mechanical prediction of nanoscale photovoltaics," J. Phys. Chem. Lett., Vol. 5, 1272, 2014.
doi:10.1021/jz5003154

13. Fetter, A. L. and J. D. Walecka, Quantum Theory of Many Particle Systems, Dover, New York, 1971.

14. Yam, C. Y., L. Y. Meng, Y. Zhang, and G. H. Chen, "A multiscale quantum mechanics/electromagnetics method for device," Chem. Soc. Rev., Vol. 44, 1763, 2015.
doi:10.1039/C4CS00348A

15. Meng, L. Y., C. Y. Yam, Y. Zhang, R. L. Wang, and G. H. Chen, "Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells," J. Phys. Chem. Lett., Vol. 6, 4410, 2015.
doi:10.1021/acs.jpclett.5b01913

16. Porezag, D., T. Frauenheim, T. K¨ohler, G. Seifert, and R. Kaschner, "Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon," Phys. Rev. B, Vol. 51, No. 19, 12947, 1995.
doi:10.1103/PhysRevB.51.12947

17. Elstner, M., D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, "Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties," Phys. Rev. B, Vol. 58, No. 11, 7260, 1998.
doi:10.1103/PhysRevB.58.7260

18. Pearton, S. J. and F. Ren, "GaN electronics advanced materials," Adv. Mater., Vol. 12, 1571, 2000.
doi:10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T

19. Shui, R. J., G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton, and C. R. Abernathy, "Comparison of plasma etch techniques for III-V nitrides," Solid State Electron., Vol. 42, 2259, 1998.

20. Johnson, J. C., et al., "Single gallium nitride nanowire lasers," Nat. Mater., Vol. 1, 106, 2002.
doi:10.1038/nmat728

21. Wallentin, J., et al., "InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit," Science, Vol. 339, 1057-1060, 2013.
doi:10.1126/science.1230969

22. Krogstrup, P., et al., "Single-nanowire solar cells beyond the Shockley-Queisser limit," Nat. Photon., Vol. 6, 306-310, 2013.
doi:10.1038/nphoton.2013.32

23. Ramer, N. J. and A. M. Rappe, "Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1−xTix)O3," Phys. Rev. B, Vol. 62, R743, 2000.
doi:10.1103/PhysRevB.62.R743

24. Carter, D. J., J. D. Gale, B. Delley, and C. Stampfl, "Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles," Phys. Rev. B, Vol. 77, 115349, 2008.
doi:10.1103/PhysRevB.77.115349

25. Fang, D. Q., A. L. Rosa, Th. Frauenheim, and R. Q. Zhang, "Band gap engineering of GaN nanowires by surface functionalization," Appl. Phys. Lett., Vol. 94, 073116, 2009.
doi:10.1063/1.3086316


© Copyright 2014 EMW Publishing. All Rights Reserved