An efficient quantum mechanical approach is formulated to model electron-photon interactions in nanoscale devices. Based on nonequilibrium Green's function formalism, electron-photon interactions and open boundaries in the nanoscale systems are taken into account in terms of self-energies. By separating different components in the electron-photon interactions, optical absorption and emission processes in the devices can be analyzed, and the method allows studies of different optoelectronic devices. In conjunction with density-functional tight-binding method, photo-induced current and other optical properties of nanoscale devices can be simulated without relying on empirical parameters. To demonstrate our approach, numerical studies of gallium nitride nanowire solar cells of realistic sizes are presented.
2. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of Polymer/fullerene bulk heterojunction solar cells," Phys. Rev. B, Vol. 72, No. 8, 085205, 2005.
doi:10.1103/PhysRevB.72.085205
3. Keldysh, L.-V., "Diagram technique for nonequilibrium processes," Sov. Phys. JETP, Vol. 20, 1018, 1965.
4. Meir, Y. and N. S. Wingreen, "Landauer formula for the current through an interacting electron region," Phys. Rev. Lett., Vol. 68, 2512, 1992.
doi:10.1103/PhysRevLett.68.2512
5. Jauho, A.-P., N. S. Wingreen, and Y. Meir, "Time-dependent transport in interacting and noninteracting resonant-tunneling systems," Phys. Rev. B, Vol. 50, No. 8, 5528, 1994.
doi:10.1103/PhysRevB.50.5528
6. Zheng, X., F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, "Time-dependent density-functional theory for open systems," Phys. Rev. B, Vol. 75, No. 19, 195127, 2007.
doi:10.1103/PhysRevB.75.195127
7. Kwok, Y. H., H. Xie, C. Y. Yam, X. Zheng, and G. H. Chen, "Time-dependent density functional theory quantum transport simulation in non-orthogonal basis," J. Chem. Phys., Vol. 139, No. 22, 224111, 2013.
doi:10.1063/1.4840655
8. Wang, R. L., X. Zheng, Y. H. Kwok, H. Xie, G. H. Chen, and C. Y. Yam, "Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions," J. Chem. Phys., Vol. 142, No. 14, 144112, 2015.
doi:10.1063/1.4917172
9. Henrickson, L. E., "Nonequilibrium photocurrent modeling in resonant tunneling photodetectors," J. Appl. Phys., Vol. 91, No. 10, 6273-6281, 2002.
doi:10.1063/1.1473677
10. Galperin, M. and A. Nitzan, "Current-induced light emission and light-induced current in molecular-tunneling junctions," Phys. Rev. Lett., Vol. 95, 206802, 2005.
doi:10.1103/PhysRevLett.95.206802
11. Galperin, M. and A. Nitzan, "Molecular optoelectronics: The interaction of molecular conduction junctions with light," Phys. Chem., Vol. 14, 9421, 2012.
12. Zhang, Y., L. Y. Meng, C. Y. Yam, and G. H. Chen, "Quantum-mechanical prediction of nanoscale photovoltaics," J. Phys. Chem. Lett., Vol. 5, 1272, 2014.
doi:10.1021/jz5003154
13. Fetter, A. L. and J. D. Walecka, Quantum Theory of Many Particle Systems, Dover, New York, 1971.
14. Yam, C. Y., L. Y. Meng, Y. Zhang, and G. H. Chen, "A multiscale quantum mechanics/electromagnetics method for device," Chem. Soc. Rev., Vol. 44, 1763, 2015.
doi:10.1039/C4CS00348A
15. Meng, L. Y., C. Y. Yam, Y. Zhang, R. L. Wang, and G. H. Chen, "Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells," J. Phys. Chem. Lett., Vol. 6, 4410, 2015.
doi:10.1021/acs.jpclett.5b01913
16. Porezag, D., T. Frauenheim, T. K¨ohler, G. Seifert, and R. Kaschner, "Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon," Phys. Rev. B, Vol. 51, No. 19, 12947, 1995.
doi:10.1103/PhysRevB.51.12947
17. Elstner, M., D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, "Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties," Phys. Rev. B, Vol. 58, No. 11, 7260, 1998.
doi:10.1103/PhysRevB.58.7260
18. Pearton, S. J. and F. Ren, "GaN electronics advanced materials," Adv. Mater., Vol. 12, 1571, 2000.
doi:10.1002/1521-4095(200011)12:21<1571::AID-ADMA1571>3.0.CO;2-T
19. Shui, R. J., G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton, and C. R. Abernathy, "Comparison of plasma etch techniques for III-V nitrides," Solid State Electron., Vol. 42, 2259, 1998.
20. Johnson, J. C., et al., "Single gallium nitride nanowire lasers," Nat. Mater., Vol. 1, 106, 2002.
doi:10.1038/nmat728
21. Wallentin, J., et al., "InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit," Science, Vol. 339, 1057-1060, 2013.
doi:10.1126/science.1230969
22. Krogstrup, P., et al., "Single-nanowire solar cells beyond the Shockley-Queisser limit," Nat. Photon., Vol. 6, 306-310, 2013.
doi:10.1038/nphoton.2013.32
23. Ramer, N. J. and A. M. Rappe, "Virtual-crystal approximation that works: Locating a compositional phase boundary in Pb(Zr1−xTix)O3," Phys. Rev. B, Vol. 62, R743, 2000.
doi:10.1103/PhysRevB.62.R743
24. Carter, D. J., J. D. Gale, B. Delley, and C. Stampfl, "Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles," Phys. Rev. B, Vol. 77, 115349, 2008.
doi:10.1103/PhysRevB.77.115349
25. Fang, D. Q., A. L. Rosa, Th. Frauenheim, and R. Q. Zhang, "Band gap engineering of GaN nanowires by surface functionalization," Appl. Phys. Lett., Vol. 94, 073116, 2009.
doi:10.1063/1.3086316