PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 159 > pp. 15-26

A COMPACT CPW FED CRR LOADED FOUR ELEMENT METAMATERIAL ARRAY ANTENNA FOR WIRELESS APPLICATION

By N. Mishra and R. K. Chaudhary

Full Article PDF (2,847 KB)

Abstract:
A compact coplanar waveguide (CPW) fed close ring resonator (CRR) loaded four-element metamaterial (MTM) array antenna for wireless application is designed and discussed in this article. The array is designed with corporate feeding network, arranged in a manner to offer 3 dB power at its each element. The proposed 1×4 MTM array antenna offers a fractional bandwidth of 10.18% with respect to the resonance frequency of fr = 2.26 GHz. At the resonance frequency of 2.26 GHz, the proposed 1×4 MTM array antenna offers a gain of 5.10 dBi in the direction of broadside radiation. Each element of the proposed array antenna consists of CRR, which removes the requirement of via and allows the design of a uniplanar MTM array. The overall electrical size of the single element antenna shows compactness of 0.255λ0 × 0.155λ0 × 0.012λ0, where λ0 is the free space wavelength at its resonance frequency of fr = 2.3 GHz. The proposed MTM array antenna is designed, and simulated on ANSYS HFSS 14.0 and simulated results are verified with the fabricated proto-type.

Citation:
N. Mishra and R. K. Chaudhary, "A Compact CPW Fed CRR Loaded Four Element Metamaterial Array Antenna for Wireless Application," Progress In Electromagnetics Research, Vol. 159, 15-26, 2017.
doi:10.2528/PIER17021304
http://www.jpier.org/PIER/pier.php?paper=17021304

References:
1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications, Wiley, Hoboken, NJ, 2005.
doi:10.1002/0471754323

2. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas Wireless Propag. Lett., Vol. 9, 36-39, 2010.
doi:10.1109/LAWP.2010.2041628

3. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. on Antennas and Propagation, Vol. 63, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521

4. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494

5. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

6. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832

7. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material inspired 900 electrically tilted ultra-wideband resonator," Opt. Eng., Vol. 53, No. 10, 107104, Oct. 2014, DOI: 10.1117/1.OE.53.10.107104.
doi:10.1117/1.OE.53.10.107104

8. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked µ-negative materialloaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, Mar. 2016.
doi:10.1017/S175907871400138X

9. Xu, H.-X., G.-M. Wang, M.-Q. Qi, C.-X. Zhang, J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right left handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298

10. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

11. Lee, H. M., "A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1377-1380, 2011.

12. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, 868-876, 2007.
doi:10.1109/TAP.2007.891845

13. Liu, C. C., P. L. Chi, and Y. D. Lin, "Compact zeroth-order resonant antenna based on dual-arm spiral configuration," IEEE Antennas Wireless Propag. Lett., Vol. 11, 318-321, 2012.
doi:10.1109/TAP.2011.2167907

14. Mehdipour, A., T. A. Denidni, and A. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, 555-562, 2014.
doi:10.1109/TAP.2013.2290791

15. Mishra, N., A. Gupta, and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna using Ω-shaped interdigital capacitor for mobile applications," Microwave and Optical Technology Lett., Vol. 57, 2558-2562, 2015.
doi:10.1002/mop.29402

16. Si, L.-M., W. Zhu, and H.-J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dualband antenna," IEEE Antenna Wireless Propag. Lett., Vol. 12, 305-308, 2013.
doi:10.1109/LAWP.2013.2249037

17. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas and Propag., Vol. 62, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788

18. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. on Antennas and Propag., Vol. 57, 331-338, 2009.
doi:10.1109/TAP.2008.2011230

19. Nasimuddin, Z., N. Chen, and X. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Trans. on Antennas and Propag., Vol. 61, 3451-3456, 2013.
doi:10.1109/TAP.2013.2256094

20. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, 1-11, 2016.

21. Chen, H.-D., C.-Y.-D. Sim, J. Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Trans. on Antennas and Propag., Vol. 60, 3977-3980, 2012.
doi:10.1109/TAP.2012.2201116

22. Wang, H., X. B. Huang, and D. G. Fang, "A single layer wideband U-slot microstrip patch antenna array," IEEE Antenna Wireless Propag. Lett., Vol. 7, 9-12, 2008.
doi:10.1109/LAWP.2007.914122

23. Sharma, P. and S. Gupta, "Bandwidth and gain enhancement in microstrip antenna array for 8 GHz frequency applications," 2014 Students Conference on Proc. Engineering and Systems (SCES), 1-6, Allahabad, India, May 2014.

24. Palandoken, M., "Microstrip antenna with compact anti-spiral slot resonator for 2.4 GHz energy harvesting applications," Microwave And Optical Technology Letters, Vol. 58, No. 6, 1404-1408, June 2016, DOI: 10.1002/mop.29824.
doi:10.1002/mop.29824

25. Levine, E., G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas Propag., Vol. 37, 426-434, 1989.
doi:10.1109/8.24162

26. Yeung, S. H., A. G. Lamperez, T. K. Sarkar, and M. S. Palma, "Comparison of the performance between a parasitically coupled and a direct coupled feed for a microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 62, 2813-2818, 2014.

27. Raheem, A. and E. K. I. Hamad, "Design of compact-efficient array of patch based on metamaterial T-junction," Proc. IEEE APS, (MECAP), 1-3, Cairo, Egypt, 2010.

28. Mansouri, Z., A. S. Arezoomand, S. Heydari, and F. B. Zarrabi, "Dual notch UWB fork monopole antenna with CRLH metamaterial load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711

29. Lee, H. M., "A compact co-planar waveguide-fed zeroth-order resonant antenna with an improved efficiency and gain employing two symmetric unit cells," Electrical and Electronic Engineering, Vol. 1, No. 1, 12-16, 2011.

30. Kompa, G., Practical Microstrip Design and Applications, Artech House, London, 2005.

31. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on via-less single layer," IEEE Trans. Antennas Propag., Vol. 59, 363-372, 2011.
doi:10.1109/TAP.2010.2096191

32. Saravani, S., C. K. Chakrabarty, and N. Md Din, "Compact bandwidth-enhanced center-fed CPW zeroth-order resonant antenna loaded by parasitic element," Progress In Electromagnetics Research Letters, Vol. 66, 1-8, 2017.
doi:10.2528/PIERL16100201

33. Lee, J.-G., D.-J. Kim, and J.-H. Lee, "Compact penta-band dual ZOR antenna for mobile applications," International Journal of Antennas and Propagation, 2016.

34. Xiu, X. H., W. G. Ming, and G. J. Qiang, "Compact dual-band zeroth-order resonance antenna," Chinese Physics Letters, Vol. 29, No. 1, 014101, 2012.
doi:10.1088/0256-307X/29/1/014101


© Copyright 2014 EMW Publishing. All Rights Reserved