PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 159 > pp. 125-138

MAGNETO-INDUCTIVE MAGNETIC RESONANCE IMAGING DUODENOSCOPE

By R. R. A. Syms, E. Kardoulaki, M. Rea, K. Choonee, S. Taylor-Robinson, C. Wadsworth, and I. R. Young

Full Article PDF (1,101 KB)

Abstract:
A magnetic resonance imaging (MRI) duodenoscope is demonstrated, by combining non-magnetic endoscope components with a thin-film receiver based on a magneto-inductive waveguide. The waveguide elements consist of figure-of-eight shaped inductors formed on either side of a flexible substrate and parallel plate capacitors that use the substrate as a dielectric. Operation is simulated using equivalent circuit models and by computation of two- and three-dimensional sensitivity patterns. Circuits are fabricated for operation at 127.7 MHz by double-sided patterning of copper-clad Kapton and assembled onto non-magnetic flexible endoscope insertion tubes. Operation is verified by bench testing and by 1H MRI at 3T using phantoms. The receiver can form a segmented coaxial image along the length of the endoscope, even when bent, and shows a signal-to-noise-ratio advantage over a surface array coil up to three times the tube diameter at the tip. Initial immersion imaging experiments have been carried out and confirm an encouraging lack of sensitivity to RF heating.

Citation:
R. R. A. Syms, E. Kardoulaki, M. Rea, K. Choonee, S. Taylor-Robinson, C. Wadsworth, and I. R. Young, "Magneto-Inductive Magnetic Resonance Imaging Duodenoscope," Progress In Electromagnetics Research, Vol. 159, 125-138, 2017.
doi:10.2528/PIER17062104
http://www.jpier.org/PIER/pier.php?paper=17062104

References:
1. Hoult, D. I. and P. C. Lauterbur, "The sensitivity of the zeugmatographic experiment involving human samples," J. Magn. Reson., Vol. 34, 425-433, 1979.

2. Ocali, O. and E. Atalar, "Ultimate intrinsic signal-to-noise ratio in MRI," Magn. Reson. Med., Vol. 39, 462-473, 1988.
doi:10.1002/mrm.1910390317

3. Eryaman, Y., Y. Oner, and E. Atalar, "Design of internal coils using ultimate intrinsic SNR," Magn. Reson. Mater. Phys., Vol. 22, 221-228, 2009.
doi:10.1007/s10334-009-0167-1

4. Inui, K., et al., "Endoscopic MRI: Preliminary results of a new technique for visualization and staging of gastrointestinal tumors," Endoscopy, Vol. 27, 480-485, 1995.
doi:10.1055/s-2007-1005752

5. Gilderdale, D. J., A. D. Williams, U. Dave, and N. M. de Souza, "An inductively-coupled, detachable receiver coil system for use with magnetic resonance compatible endoscopes," JMRI, Vol. 18, 131-135, 2003.
doi:10.1002/jmri.10321

6. Syms, R. R. A., I. R. Young, C. A. Wadsworth, S. D. Taylor-Robinson, and M. Rea, "Magnetic resonance imaging duodenoscope," IEEE Trans. Biomed. Engng., Vol. 60, 3458-3467, 2013.
doi:10.1109/TBME.2013.2271045

7. Kantor, H. L., R. W. Briggs, and R. S. Balaban, "In vivo 31P nuclear magnetic resonance measurements in canine heart using a catheter-coil," Circ. Res., Vol. 55, 261-266, 1984.
doi:10.1161/01.RES.55.2.261

8. Martin, P. J., D. B. Plewes, and R. M. Henkelman, "MR imaging of blood vessels with an intravascular coil," J. Magn. Reson. Imag., Vol. 2, 421-429, 1992.
doi:10.1002/jmri.1880020411

9. Atalar, E., P. A. Bottomley, O. Ocali, L. C. L. Correia, M. D. Kelemen, J. A. C. Lima, and E. A. Zerhouni, "High resolution intravascular MRI and MRS by using a catheter receiver coil," Magn. Reson. Med., Vol. 36, 596-605, 1996.
doi:10.1002/mrm.1910360415

10. Bottomley, P. A., E. Atalar, R. F. Lee, K. A. Shunk, and A. Lardo, "Cardiovascular MRI probes for the outside in and for the inside out," Magn. Reson. Mats. Phys. Biol. Med., Vol. 11, 49-51, 2000.
doi:10.1007/BF02678493

11. Duerk, J. L., E. Y. Wong, and J. S. Lewin, "A brief review of hardware for catheter tracking in magnetic resonance imaging," MAGMA, Vol. 13, 199-208, 2002.
doi:10.1016/S1352-8661(01)00150-8

12. Boskamp, E., "Improved surface coil imaging in MRI: Decoupling of the excitation and receiver coils," Radiology, Vol. 157, 449-452, 1985.
doi:10.1148/radiology.157.2.4048454

13. Nitz, W. R., A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, "On the heating of linear conductive structures as guidewires and catheters in interventional MRI," J. Magn. Reson. Imag., Vol. 13, 105-114, 2001.
doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0

14. Atalar, E., "Safe coaxial cables," Proc. 7th Ann. Meet. ISMRM, 1006, Philadelphia, PA, USA, May 24–28, 1999.

15. Ladd, M. E. and H. H. Quick, "Reduction of resonant RF heating in intravascular catheters using coaxial chokes," Magn. Reson. Med., Vol. 43, 615-619, 2000.
doi:10.1002/(SICI)1522-2594(200004)43:4<615::AID-MRM19>3.0.CO;2-B

16. Vernickel, P., V. Schulz, S. Weiss, and B. Gleich, "A safe transmission line for MRI," IEEE Trans. Biomed. Engng., Vol. 52, 1094-1102, 2005.
doi:10.1109/TBME.2005.846713

17. Krafft, A., S. Muller, R. Umathum, W. Semmler, and M. Bock, "B1 field-insensitive transformers for RF-safe transmission lines," Magn. Reson. Mater. Phys., Vol. 19, 257-266, 2006.
doi:10.1007/s10334-006-0055-x

18. Wiltshire, M. C. K., J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, "Metamaterial endoscope for magnetic field transfer: Near field imaging with magnetic wires," Optics Express, Vol. 11, 709-714, 2003.
doi:10.1364/OE.11.000709

19. Freire, M. J. and R. Marques, "Planar magnetoinductive lens for three-dimensional subwavelength imaging," Appl. Phys. Letts., Vol. 86, art. 182505, 2005.
doi:10.1063/1.1922074

20. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μr = −1 metamaterial lens for magnetic resonance imaging," Appl. Phys. Lett., Vol. 93, 231108, 2008.
doi:10.1063/1.3043725

21. Schelekova, A. V., et al., "Application of metasurfaces for magnetic resonance imaging," Proc. 10th Metamaterials Conf., 13-14, Platanias, Crete, Sept. 17– 22, 2016.

22. Slobozhanyuk, A. P., et al., "Enhancement of magnetic resonance imaging with metasurfaces," Adv. Mats., Vol. 28, 1832-1838, 2016.
doi:10.1002/adma.201504270

23. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

24. Radu, X., D. Garray, and C. Craeye, "Towards a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

25. Belov, P. A., et al., "Experimental demonstration of multiwire endoscopes capable of manipulating near-fields with sub-wavelength resolution," Appl. Phys. Lett., Vol. 97, 191905, 2010.
doi:10.1063/1.3516161

26. Syms, R. R. A., I. R. Young, M. M. Ahmad, and M. Rea, "Magnetic resonance imaging with linear magneto-inductive waveguides," J. Appl. Phys., Vol. 112, 114911, 2012.
doi:10.1063/1.4768281

27. Syms, R. R. A., I. R. Young, M. M. Ahmad, S. D. Taylor-Robinson, and M. Rea, "Magnetoinductive catheter receiver for magnetic resonance imaging," IEEE Trans. Biomed. Engng., Vol. 60, 2421-2431, 2013.
doi:10.1109/TBME.2013.2258020

28. Segkhoonthod, K., R. R. A. Syms, and I. R. Young, "Design of magneto-inductive magnetic resonance imaging catheters," IEEE Sensors J., Vol. 14, 1505-1513, 2014.
doi:10.1109/JSEN.2013.2296852

29. Kardoulaki, E., R. R. A. Syms, I. R. Young, and M. Rea, "SNR in MI catheter receivers for MRI," IEEE Sensors J., Vol. 16, 1700-1707, 2016.
doi:10.1109/JSEN.2015.2500226

30. Syms, R. R. A., I. R. Young, L. Solymar, and T. Floume, "Thin-film magneto-inductive cables," J. Phys. D. Appl. Phys., Vol. 43, 055102, 2010.
doi:10.1088/0022-3727/43/5/055102

31. Syms, R. R. A., L. Solymar, and I. R. Young, "Broad-band coupling transducers for magnetoinductive cable," J. Phys. D. Appl. Phys., Vol. 43, 285003, 2010.
doi:10.1088/0022-3727/43/28/285003

32. Shamonina, E., V. A. Kalinin, K. H. Ringhofer, and L. Solymar, "Magneto-inductive waveguide," Elect. Lett., Vol. 38, 371-373, 2002.
doi:10.1049/el:20020258

33. Wiltshire, M. C. K., E. Shamonina, I. R. Young, and L. Solymar, "Dispersion characteristics of magneto-inductive waves: Comparison between theory and experiment," Elect. Lett., Vol. 39, 215-217, 2003.
doi:10.1049/el:20030138

34. Hoult, D. I. and R. E. Richards, "The signal-to-noise ratio of the nuclear magnetic resonance experiment," J. Magn. Reson., Vol. 24, 71-85, 1976.


© Copyright 2014 EMW Publishing. All Rights Reserved