Vol. 161
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-03-05
Exploratory Study on Light-Sheet Based Three-Dimensional Surface Topography
By
Progress In Electromagnetics Research, Vol. 161, 11-18, 2018
Abstract
Light-sheet microscopy has attracted considerable attention since it is a fluorescence imaging technique with rapid optical sectioning capabilities for transparent sample. In our study, we report a new application based on light-sheet microscopy for exploratory investigating three-dimensional surface topography of opaque sample. Instead of using inelastic scattering fluorescent signal, our method utilizes the elastic scattering light from the surface of opaque sample, which is illuminated by a light sheet generated by a cylindrical lens. Through a simple structural modification by removing the fluorescent filter, the orthogonally imaging module can capture the elastic scattering image. As the opaque sample is scanned by a motorized stage, the light-sheet microscope acquires a serial of sectional images, which can be stitched to be a three-dimensional surface topography image. This method also offers the opportunity to visualize 3D fingerprint on micron level. Therefore, this technique may be useful in industry and biomedical field for the measurement of surface microstructure.
Citation
Fuhong Cai, Jie Chen, Chunling Zhou, Xuan Zhu, and Sailing He, "Exploratory Study on Light-Sheet Based Three-Dimensional Surface Topography," Progress In Electromagnetics Research, Vol. 161, 11-18, 2018.
doi:10.2528/PIER18012703
References

1. Pawley, J. B. (ed.), Handbook of Biological Confocal Microscopy, 3rd Ed., Springer, New York, 2006.
doi:10.1007/978-0-387-45524-2

2. Helmchen, F. and W. Denk, "Deep tissue two-photon microscopy," Nature Methods, Vol. 2, 932-940, 2005.
doi:10.1038/nmeth818

3. Li, J., F. Cai, Y. Dong, Z. Zhu, X. Sun, H. Zhang, and S. He, "A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging," Optics Communications, Vol. 392, 1-6, 2017.
doi:10.1016/j.optcom.2017.01.031

4. Tabaksblat, R., R. Meier, and B. Kip, "Confocal Raman microspectroscopy: theory and application to thin polymer samples," Applied Spectroscopy, Vol. 46, 60-68, 1992.
doi:10.1366/0003702924444434

5. Knoester, A. and G. Brakenhof, "Applications of confocal microscopy in industrial solid materials: Some examples and a first evaluation," Journal of Microscopy, Vol. 157, 105-113, 1990.
doi:10.1111/j.1365-2818.1990.tb02951.x

6. Qin, J., K. Chao, and M. S. Kim, "A line-scan hyperspectral system for high-throughput Raman chemical imaging," Applied Spectroscopy, Vol. 68, 692-695, 2014.
doi:10.1366/13-07411

7. Cai, F., W. Lu, W. Shi, and S. He, "A mobile device-based imaging spectrometer for environmental monitoring by attaching a lightweight small module to a commercial digital camera," Scientific Reports, Vol. 7, 15602, 2017.
doi:10.1038/s41598-017-15848-x

8. Cai, F., D. Wang, M. Zhu, and S. He, "Pencil-like imaging spectrometer for bio-samples sensing," Biomedical Optics Express, Vol. 8, 5427-5436, 2007.
doi:10.1364/BOE.8.005427

9. Sinclair, M., J. Timlin, D. Haaland, and M. Werner-Washburne, "Design, construction, characterization, and application of a hyperspectral microarray scanner," Applied Optics, Vol. 43, 2079-2088, 2004.
doi:10.1364/AO.43.002079

10. Nakariyakula, S. and D. Casasentb, "Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data," Journal of Food Engineering, Vol. 94, 358-365, 2009.
doi:10.1016/j.jfoodeng.2009.04.001

11. Cai, F., R. Tang, S. Wang, and S. He, "A compact line-detection spectrometer with a Powell lens," Optik-International Journal for Light and Electron Optics, Vol. 155, 267-272, 2018.
doi:10.1016/j.ijleo.2017.11.022

12. Biggs, K. B., K. M. Balss, and C. A. Maryanof, "High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy," Nature Methods, Vol. 4, 311-313, 2007.
doi:10.1038/nmeth1017

13. Keller, P. J., A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, "Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy," Science, Vol. 322, 1065-1069, 2008.
doi:10.1126/science.1162493

14. Truong, T., W. Supatto, D. Koos, J. Choi, and S. Fraser, "Deep and fast live imaging with two-photon scanned light-sheet microscopy," Nature Methods, Vol. 8, 757-760, 2011.
doi:10.1038/nmeth.1652

15. Xu, D., W. Zhou, and L. Peng, "Three-dimensional live multi-label light-sheet imaging with synchronous excitation-multiplexed structured illumination," Optics Express, Vol. 25, 31159-31173, 2017.
doi:10.1364/OE.25.031159

16. Cao, Z., C. Zhai, J. Li, F. Xian, and S. Pei, "Light sheet based on one-dimensional Airy beam generated by single cylindrical lens," Optics Communications, Vol. 393, 11-16, 2017.
doi:10.1016/j.optcom.2017.02.028

17. Cao, Z. and C. Zhai, "Scattering of one-dimensional Airy beam light sheet with finite energy by a sphere," Applied Optics, Vol. 56, 3491-3496, 2017.
doi:10.1364/AO.56.003491

18. Gustafsson, M., "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy, Vol. 198, 82-87, 2000.
doi:10.1046/j.1365-2818.2000.00710.x

19. Keller, P., A. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. Stelzer, "Fast, highcontrast imaging of animal development with scanned light sheet-based structured-illumination microscopy," Nature Methods, Vol. 7, 637-642, 2010.
doi:10.1038/nmeth.1476

20. Rust, M., M. and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods, Vol. 3, 793-796, 2006.
doi:10.1038/nmeth929

21. Hu, Y., M. Zimmerley, Y. Li, R. Watters, and H. Cang, "Single-molecule super-resolution lightsheet microscopy," Chem. Phys. Chem., Vol. 15, 577-586, 2014.
doi:10.1002/cphc.201300732

22. Lei, Z., X. Liu, L. Zhao, L. Chen, Q. Li, T. Yuan, and W. Lu, "A novel 3D stitching method for WLI based large range surface topography measurement," Optics Communications, Vol. 359, 435-447, 2016.
doi:10.1016/j.optcom.2015.09.074

23. Ledl, V., P. Psota, F. Kavan, O. Matousek, and P. Mokry, "Surface topography measurement by frequency sweeping digital holography," Applied Optics, Vol. 56, 7808-7814, 2017.
doi:10.1364/AO.56.007808

24. Zhang, T. F. and X. Jiang, "Surface topography acquisition method for double-sided near-rightangle structured surfaces based on dual-probe wavelength scanning interferometry," Optics Express, Vol. 25, 24148-24156, 2017.
doi:10.1364/OE.25.024148

25. Sun, M., J. Birkenfeld, A. Castro, S. Ortiz, and S. Marcos, "OCT 3-D surface topography of isolated human crystalline lenses," Biomedical Optics Express, Vol. 5, 3547-3561, 2014.
doi:10.1364/BOE.5.003547

26. Wang, L., S. Jacques, and L. Zheng, "MCML — Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F

27. Cai, F. and W. Lu, "A dynamic accuracy estimation for gpu-based monte carlo simulation in tissue optics," Current Optics and Photonics, Vol. 1, 551-555, 2017.

28. Hong, G. S., S. Diao, J. L. Chang, A. L. Antaris, C. X. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. J. Dai, "Through-skull fluorescence imaging of the brain in a new near-infrared window," Nature Photonics, Vol. 8, 723-730, 2014.
doi:10.1038/nphoton.2014.166

29. Cai, F., J. Yu, J. Qian, Y. Wang, Z, Chen, J. Huang, Z. Ye, and S. He, "Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging," Laser & Photonics Reviews, Vol. 8, 865-874, 2014.
doi:10.1002/lpor.201400009