PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 161 > pp. 11-18

EXPLORATORY STUDY ON LIGHT-SHEET BASED THREE-DIMENSIONAL SURFACE TOPOGRAPHY

By F. Cai, J. Chen, C. Zhou, X. Zhu, and S. He

Full Article PDF (1,517 KB)

Abstract:
Light-sheet microscopy has attracted considerable attention since it is a fluorescence imaging technique with rapid optical sectioning capabilities for transparent sample. In our study, we report a new application based on light-sheet microscopy for exploratory investigating three-dimensional surface topography of opaque sample. Instead of using inelastic scattering fluorescent signal, our method utilizes the elastic scattering light from the surface of opaque sample, which is illuminated by a light sheet generated by a cylindrical lens. Through a simple structural modification by removing the fluorescent filter, the orthogonally imaging module can capture the elastic scattering image. As the opaque sample is scanned by a motorized stage, the light-sheet microscope acquires a serial of sectional images, which can be stitched to be a three-dimensional surface topography image. This method also offers the opportunity to visualize 3D fingerprint on micron level. Therefore, this technique may be useful in industry and biomedical field for the measurement of surface microstructure.

Citation:
F. Cai, J. Chen, C. Zhou, X. Zhu, and S. He, "Exploratory Study on Light-Sheet Based Three-Dimensional Surface Topography," Progress In Electromagnetics Research, Vol. 161, 11-18, 2018.
doi:10.2528/PIER18012703
http://www.jpier.org/PIER/pier.php?paper=18012703

References:
1. Pawley, J. B. (ed.), Handbook of Biological Confocal Microscopy, 3rd Ed., Springer, New York, 2006.
doi:10.1007/978-0-387-45524-2

2. Helmchen, F. and W. Denk, "Deep tissue two-photon microscopy," Nature Methods, Vol. 2, 932-940, 2005.
doi:10.1038/nmeth818

3. Li, J., F. Cai, Y. Dong, Z. Zhu, X. Sun, H. Zhang, and S. He, "A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging," Optics Communications, Vol. 392, 1-6, 2017.
doi:10.1016/j.optcom.2017.01.031

4. Tabaksblat, R., R. Meier, and B. Kip, "Confocal Raman microspectroscopy: theory and application to thin polymer samples," Applied Spectroscopy, Vol. 46, 60-68, 1992.
doi:10.1366/0003702924444434

5. Knoester, A. and G. Brakenhof, "Applications of confocal microscopy in industrial solid materials: Some examples and a first evaluation," Journal of Microscopy, Vol. 157, 105-113, 1990.
doi:10.1111/j.1365-2818.1990.tb02951.x

6. Qin, J., K. Chao, and M. S. Kim, "A line-scan hyperspectral system for high-throughput Raman chemical imaging," Applied Spectroscopy, Vol. 68, 692-695, 2014.
doi:10.1366/13-07411

7. Cai, F., W. Lu, W. Shi, and S. He, "A mobile device-based imaging spectrometer for environmental monitoring by attaching a lightweight small module to a commercial digital camera," Scientific Reports, Vol. 7, 15602, 2017.
doi:10.1038/s41598-017-15848-x

8. Cai, F., D. Wang, M. Zhu, and S. He, "Pencil-like imaging spectrometer for bio-samples sensing," Biomedical Optics Express, Vol. 8, 5427-5436, 2007.
doi:10.1364/BOE.8.005427

9. Sinclair, M., J. Timlin, D. Haaland, and M. Werner-Washburne, "Design, construction, characterization, and application of a hyperspectral microarray scanner," Applied Optics, Vol. 43, 2079-2088, 2004.
doi:10.1364/AO.43.002079

10. Nakariyakula, S. and D. Casasentb, "Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data," Journal of Food Engineering, Vol. 94, 358-365, 2009.
doi:10.1016/j.jfoodeng.2009.04.001

11. Cai, F., R. Tang, S. Wang, and S. He, "A compact line-detection spectrometer with a Powell lens," Optik-International Journal for Light and Electron Optics, Vol. 155, 267-272, 2018.
doi:10.1016/j.ijleo.2017.11.022

12. Biggs, K. B., K. M. Balss, and C. A. Maryanof, "High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy," Nature Methods, Vol. 4, 311-313, 2007.
doi:10.1038/nmeth1017

13. Keller, P. J., A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, "Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy," Science, Vol. 322, 1065-1069, 2008.
doi:10.1126/science.1162493

14. Truong, T., W. Supatto, D. Koos, J. Choi, and S. Fraser, "Deep and fast live imaging with two-photon scanned light-sheet microscopy," Nature Methods, Vol. 8, 757-760, 2011.
doi:10.1038/nmeth.1652

15. Xu, D., W. Zhou, and L. Peng, "Three-dimensional live multi-label light-sheet imaging with synchronous excitation-multiplexed structured illumination," Optics Express, Vol. 25, 31159-31173, 2017.
doi:10.1364/OE.25.031159

16. Cao, Z., C. Zhai, J. Li, F. Xian, and S. Pei, "Light sheet based on one-dimensional Airy beam generated by single cylindrical lens," Optics Communications, Vol. 393, 11-16, 2017.
doi:10.1016/j.optcom.2017.02.028

17. Cao, Z. and C. Zhai, "Scattering of one-dimensional Airy beam light sheet with finite energy by a sphere," Applied Optics, Vol. 56, 3491-3496, 2017.
doi:10.1364/AO.56.003491

18. Gustafsson, M., "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy, Vol. 198, 82-87, 2000.
doi:10.1046/j.1365-2818.2000.00710.x

19. Keller, P., A. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. Stelzer, "Fast, highcontrast imaging of animal development with scanned light sheet-based structured-illumination microscopy," Nature Methods, Vol. 7, 637-642, 2010.
doi:10.1038/nmeth.1476

20. Rust, M., M. and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nature Methods, Vol. 3, 793-796, 2006.
doi:10.1038/nmeth929

21. Hu, Y., M. Zimmerley, Y. Li, R. Watters, and H. Cang, "Single-molecule super-resolution lightsheet microscopy," Chem. Phys. Chem., Vol. 15, 577-586, 2014.
doi:10.1002/cphc.201300732

22. Lei, Z., X. Liu, L. Zhao, L. Chen, Q. Li, T. Yuan, and W. Lu, "A novel 3D stitching method for WLI based large range surface topography measurement," Optics Communications, Vol. 359, 435-447, 2016.
doi:10.1016/j.optcom.2015.09.074

23. Ledl, V., P. Psota, F. Kavan, O. Matousek, and P. Mokry, "Surface topography measurement by frequency sweeping digital holography," Applied Optics, Vol. 56, 7808-7814, 2017.
doi:10.1364/AO.56.007808

24. Zhang, T. F. and X. Jiang, "Surface topography acquisition method for double-sided near-rightangle structured surfaces based on dual-probe wavelength scanning interferometry," Optics Express, Vol. 25, 24148-24156, 2017.
doi:10.1364/OE.25.024148

25. Sun, M., J. Birkenfeld, A. Castro, S. Ortiz, and S. Marcos, "OCT 3-D surface topography of isolated human crystalline lenses," Biomedical Optics Express, Vol. 5, 3547-3561, 2014.
doi:10.1364/BOE.5.003547

26. Wang, L., S. Jacques, and L. Zheng, "MCML — Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F

27. Cai, F. and W. Lu, "A dynamic accuracy estimation for gpu-based monte carlo simulation in tissue optics," Current Optics and Photonics, Vol. 1, 551-555, 2017.

28. Hong, G. S., S. Diao, J. L. Chang, A. L. Antaris, C. X. Chen, B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang, K. I. Andreasson, C. J. Kuo, and H. J. Dai, "Through-skull fluorescence imaging of the brain in a new near-infrared window," Nature Photonics, Vol. 8, 723-730, 2014.
doi:10.1038/nphoton.2014.166

29. Cai, F., J. Yu, J. Qian, Y. Wang, Z, Chen, J. Huang, Z. Ye, and S. He, "Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging," Laser & Photonics Reviews, Vol. 8, 865-874, 2014.
doi:10.1002/lpor.201400009


© Copyright 2014 EMW Publishing. All Rights Reserved