PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 164 > pp. 97-107

INTERNAL MAGNETIC INDUCTION TOMOGRAPHY USING A SINGLE COIL

By J. R. Feldkamp and S. Quirk

Full Article PDF (698 KB)

Abstract:
Most imaging modalities image an object's interior while all instrumentation, including sources and receivers, is externally located. One notable exception is ultra-sound (US), which can be miniaturized sufficiently to locate a US transducer within an object and gather data for image reconstruction. Another is cross-borehole geophysical imaging. The goal of any internal imaging modality is to provide images of greater fldelity while avoiding interfering structures. Due to the bulkiness of multi-coil magnetic induction tomography (MIT), transmitting and receiving coils are never placed within small targets (e.g. a human body). Here, we demonstrate a novel implementation of single-coil MIT that performs a scan all while the coil is located within the interior of a small, lab-created phantom consisting of salt-doped agarose. Phantom geometry is annular, consisting of a 6.0 cm diameter channel of depth 5.5 cm surrounded by a 3.0 cm thick cylindrical wall. A centrally located agarose gel annulus, 2.0 cm thick, is doped with sucient NaCl to elevate its conductivity above that of surrounding agarose. The resulting nearly axisymmetric phantoms consist of material having conductivity ranging from 0.11 to 10.55 S/m. A scan is accomplished robotically, with the coil stub-mounted on the positioning head of a 3-axis controller that positions the planar circular loop coil into 360 or 720 pre-programmed internal positions. Image reconstruction from gathered data is shown to correctly reveal the location, size and conductivity of the approximately axisymmetric inclusion.

Citation:
J. R. Feldkamp and S. Quirk, "Internal Magnetic Induction Tomography Using a Single Coil," Progress In Electromagnetics Research, Vol. 164, 97-107, 2019.
doi:10.2528/PIER18120408
http://www.jpier.org/PIER/pier.php?paper=18120408

References:


© Copyright 2014 EMW Publishing. All Rights Reserved