Vol. 165
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-06-10
Performance Improvement and Antenna Design of Left-Handed Material Units Based on Topological Deformations
By
Progress In Electromagnetics Research, Vol. 165, 13-33, 2019
Abstract
In this paper, by applying topological theory, we evaluate some left-handed unit structures. Based on the classification of topological deformation, the laws and characteristics of potential electromagnetic parameters are captured. The original left-handed material unit is realized by using a circular C-shaped coupling ring, the whose whole size is 10 × 10 × 0.5 mm3. Through three kinds of topological deformations, to explore the influence of topology on antenna performance, the electromagnetic parameters and left-handed characteristics of the original and modified units are compared and analyzed. For the designed handshake-shaped unit structure, simulation analysis predicts that dual-frequency, or even multi-band left-handed characteristics, can be achieved. To expand the structural performance of the handshake-shaped unit, an annular line for coupling enhancement is added inside the U-shaped structure to form an integrally coupled annular unit structure. Simulation results show that, with amplitudes of reflection coefficients of -27.1 dB and -14.5 dB, the resonance points of the improved unit structure are 3.57 GHz and 5.64 GHz, respectively. Loading the unit structure with a dual-band left-handed characteristic, a UWB antenna is designed and analyzed in detail. Through simulation, antenna performance is most affected by interference within the range of 2.5 ~ 5.0 GHz, which coincides with the double negative frequency band of the loaded left-handed structural unit. The notch frequency band of the designed UWB antenna, which is much wider than traditional notch antennas, is 3.62 ~ 4.54 GHz, with a notch bandwidth of 920 MHz.
Citation
Baiqiang You, Mengyin Dong, Jianhua Zhou, and Haike Xu, "Performance Improvement and Antenna Design of Left-Handed Material Units Based on Topological Deformations," Progress In Electromagnetics Research, Vol. 165, 13-33, 2019.
doi:10.2528/PIER19011603
References

1. Hamidian, A. and V. Subramanian, "Right and left handed transmission lines for millimeter wave applications," German Microwave Conference Digest of Papers, 227-230, Berlin, 2010.

2. Horii, Y., T. Hayashi, and Y. Iida, "A novel composite right/left-handed transmission line composed of cylindrical left-handed unit cells," IEEE MTT-S International Microwave Symposium Digest, 1013-1016, San Francisco, CA, 2006.

3. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188

4. Ziolkowski, R. W., "Double negative metamaterial design, experiments, and applications," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 396-399, 2002.
doi:10.1109/APS.2002.1016107

5. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed Cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604

6. Smith, D. R., W. J. Padilla, D. C. Vier, et al. "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

7. Decoopman, T., O. Vanbesien, and D. Lippens, "Demonstration of backward wave in a single split ring resonator and wire loaded finline," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 11, 507-509, Nov. 2004.
doi:10.1109/LMWC.2004.837075

8. Decoopman, T., A. Marteau, E. Lheurette, et al. "Left-handed electromagnetic properties of split- ring resonator and wire lzoaded transmission line in a fin-line technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1451-1457, Apr. 2006.
doi:10.1109/TMTT.2006.871356

9. Salehi, H. and R. R. Mansour, "A new realization of left-handed transmission lines employing a coaxial waveguide structure," IEEE MTT-S Int. Dig., 1941-1944, Long Beach, CA, Jun. 2005.

10. Saleh, H. and R. R. Mansour, "Analysis, modeling, and applications of coaxial waveguide-based left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3489-3497, Nov. 2005.
doi:10.1109/TMTT.2005.857335

11. Caloz, C., H. Okabe, T. Iwai, et al. "Transmission line approach of left-handed (LH) material," Proc. USNC/URSI Nat. Rad. Sci. Meeting, 39, San Antonio, TX, Jun. 2002.

12. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2701-2712, Dec. 2002.
doi:10.1109/TMTT.2002.805197

13. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, et al. "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069

14. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, 1510-1521, 2017.
doi:10.1002/2017RS006313

15. Sabah, C., "Composition of non-concentric triangular split ring resonators and wire strip for dual-band negative index metamaterials," IEEE Microwave Symposium, 303-306, 2010.

16. Xu, H. X., G. M. Wang, C. X. Zhang, et al. "Multi-band left-handed metamaterial inspired by tree-shaped fractal geometry," Photonics & Nanostructures Fundamentals & Applications, Vol. 11, No. 1, 15-28, 2013.
doi:10.1016/j.photonics.2012.06.011

17. Fiori, M., P. Muse, and G. Sapiro, "Topology constraints in graphical models," Advances in Neural Information Processing Systems, 791-799, 2012.

18. Songsiri, J. and L. Vandenberghe, "Topology selection in graphical models of autoregressive processes," Journal of Machine Learning Research, Vol. 11, No. 2, 2671-2705, 2014.

19. Sajith, K., J. Gandhimohan, and T. Shanmuganantham, "Design of SRR loaded octagonal slot CPW fed wearable antenna for EEG monitoring applications," Proceedings of IEEE International Conference on Circuits and Systems (ICCS), 49-53, Thiruvananthapuram, 2017.
doi:10.1109/ICCS1.2017.8325961

20. Haghighi, S. S., A. Heidari, and M. Movahhedi, "A three-band substrate integrated waveguide leaky-wave antenna based on composite right/left-handed structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4578-4582, Oct. 2015.
doi:10.1109/TAP.2015.2456951

21. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. Ali Sadeghzadeh, et al. "Hexa-band planar antenna with asymmetric fork-shaped radiators for multiband and broadband communication applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 471-478, 2016.
doi:10.1049/iet-map.2015.0608

22. Alhawari, A. R. H., A. Ismail, and M. A. Mahdi, "Compact ultra-wideband metamaterial antenna," Proceedings of 16th Asia-Pacific Conference on Communications (APCC), 64-68, Auckland, New Zealand, Oct. 31--Nov. 3, 2010.

23. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, No. 11, 1368-1381, 2018.
doi:10.1029/2018RS006533

24. Alibakhshi-Kenari, M., B. S. Virdee, P. Shukla, et al. "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.
doi:10.3390/electronics7090198

25. Alibakhshi-Kenari, M., B. S. Virdee, C. H. See, et al. "Study on isolation improvement between closely packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microwaves, Antennas & Propagation, Vol. 12, No. 14, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103