Vol. 168

Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-22

Superscattering of Light in Refractive-Index Near-Zero Environments

By Chan Wang, Chao Qian, Hao Hu, Lian Shen, Zuo Jia Wang, Huaping Wang, Zhiwei Xu, Baile Zhang, Hongsheng Chen, and Xiao Lin
Progress In Electromagnetics Research, Vol. 168, 15-23, 2020
doi:10.2528/PIER20070401

Abstract

Enhancing the scattering of light from subwavelength structures is of both fundamental and practical significance. While the scattering cross section from each channel cannot exceed the single-channel limit, it is recently reported that the total cross section can far exceed this limit if one overlaps the contribution from many channels. Such a phenomenon about enhancing the scattering from subwavelength structures in free space is denoted as the superscattering in some literature. However, the scatterer in practical scenarios is not always in free space but may be embedded in environments with non-unity refractive index n. The influence of environments on the superscattering remains elusive. Here the superscattering from subwavelength structures in the isotropic environment with near-zero index are theoretically investigated. Importantly, a smaller n can lead to a larger total cross section for superscattering. The underlying mechanism is that a smaller n can give rise to a larger single-channel limit. Our work thus indicates that the scattering from subwavelength structures can be further enhanced if one simultaneously maximizes the single-channel limit and the contribution from many channels.

Citation


Chan Wang, Chao Qian, Hao Hu, Lian Shen, Zuo Jia Wang, Huaping Wang, Zhiwei Xu, Baile Zhang, Hongsheng Chen, and Xiao Lin, "Superscattering of Light in Refractive-Index Near-Zero Environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.
doi:10.2528/PIER20070401
http://www.jpier.org/PIER/pier.php?paper=20070401

References


    1. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, F. J. Garcıa de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, 057401, 2003.
    doi:10.1103/PhysRevLett.90.057401

    2. Tribelsky, M. I. and B. S. Luk’Yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
    doi:10.1103/PhysRevLett.97.263902

    3. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photon., Vol. 2, 226-229, 2008.
    doi:10.1038/nphoton.2008.30

    4. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.
    doi:10.1103/PhysRevLett.102.233901

    5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater., Vol. 9, 205-213, 2010.
    doi:10.1038/nmat2629

    6. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nat. Mater., Vol. 10, 631-636, 2011.
    doi:10.1038/nmat3029

    7. Yao, J., X. Yang, X. Yin, G. Bartal, and X. Zhang, "Three-dimensional nanometer-scale optical cavities of indefinite medium," PNAS, Vol. 108, 11327-11331, 2011.
    doi:10.1073/pnas.1104418108

    8. Chen, P.-Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855-5863, 2011.
    doi:10.1021/nn201622e

    9. Staude, I., A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener, "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS Nano, Vol. 7, 7824-7832, 2013.
    doi:10.1021/nn402736f

    10. Lin, X., Y. Yang, N. Rivera, J. J. Lopez, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljacic, "All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures," PNAS, Vol. 114, 6717-6721, 2017.

    11. Lin, X., S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljacic, and I. Kaminer, "Controlling Cherenkov angles with resonance transition radiation," Nat. Phys., Vol. 14, 816-821, 2018.
    doi:10.1038/s41567-018-0138-4

    12. Shi, X., X. Lin, I. Kaminer, F. Gao, Z. Yang, J. D. Joannopoulos, M. Soljacic, and B. Zhang, "Superlight inverse Doppler effect," Nat. Phys., Vol. 14, 1001-1005, 2018.
    doi:10.1038/s41567-018-0209-6

    13. Shen, L., X. Lin, M. Y. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.
    doi:10.1063/1.5141275

    14. Qian, C., X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen, "Performing optical logic operations by a diffractive neural network," Light Sci. Appl., Vol. 9, 59, 2020.
    doi:10.1038/s41377-020-0303-2

    15. Hu, H., X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, and Y. Luo, "Nonlocality induced Cherenkov threshold," Laser Photonics Rev., 2000149, 2020.
    doi:10.1002/lpor.202000149

    16. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Phys. Rev. Lett., Vol. 105, 013901, 2010.
    doi:10.1103/PhysRevLett.105.013901

    17. Ruan, Z. and S. Fan, "Design of subwavelength superscattering nanospheres," Appl. Phys. Lett., Vol. 98, 043101, 2011.
    doi:10.1063/1.3536475

    18. Miller, O. D., C. W. Hsu, M. H. Reid, W. Qiu, B. G. De Lacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Phys. Rev. Lett., Vol. 112, 123903, 2014.
    doi:10.1103/PhysRevLett.112.123903

    19. Yang, Y., O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljacic, "Low-loss plasmonic dielectric nanoresonators," Nano Lett., Vol. 17, 3238-3245, 2017.
    doi:10.1021/acs.nanolett.7b00852

    20. Yu, Z., G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett., Vol. 89, 151116, 2006.
    doi:10.1063/1.2360896

    21. Hao, J., W. Yan, and M. Qiu, "Super-reflection and cloaking based on zero index metamaterial," Appl. Phys. Lett., Vol. 96, 101109, 2010.
    doi:10.1063/1.3359428

    22. Mirzaei, A., I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, "Cloaking and enhanced scattering of core-shell plasmonic nanowires," Opt. Express, Vol. 21, 10454-10459, 2013.
    doi:10.1364/OE.21.010454

    23. Coenen, T., F. B. Arango, A. F. Koenderink, and A. Polman, "Directional emission from a single plasmonic scatterer," Nat. Commun., Vol. 5, 3250, 2014.
    doi:10.1038/ncomms4250

    24. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
    doi:10.1038/nmat3839

    25. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948-957, 2013.
    doi:10.1038/nphoton.2013.243

    26. Li, R., B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, and H. Chen, "Design of ultracompact graphene-based superscatterers," IEEE J. Sel. Top. Quant., Vol. 23, 4600208, 2017.

    27. Qian, C., X. Lin, Y. Yang, F. Gao, Y. Shen, J. Lopez, I. Kaminer, B. Zhang, E. Li, M. Soljacic, and H. Chen, "Multifrequency superscattering from subwavelength hyperbolic structures," ACS Photon., Vol. 5, 1506-1511, 2018.
    doi:10.1021/acsphotonics.7b01534

    28. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New Jersey, 1998.
    doi:10.1002/9783527618156

    29. Brolo, A. G., E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett., Vol. 4, 2015-2018, 2004.
    doi:10.1021/nl048818w

    30. Rakich, P. T., C. Reinke, R. Camacho, P. Davids, and Z. Wang, "Giant enhancement of stimulated Brillouin scattering in the subwavelength limit," Phys. Rev. X, Vol. 2, 011008, 2012.

    31. Foot, C. J., Atomic Physics, Oxford University Press, New York, 2005.

    32. Verslegers, L., Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, "From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures," Phys. Rev. Lett., Vol. 108, 083902, 2012.
    doi:10.1103/PhysRevLett.108.083902

    33. Zhou, M., L. Shi, J. Zi, and Z. Yu, "Extraordinarily large optical cross section for localized single nanoresonator," Phys. Rev. Lett., Vol. 115, 023903, 2015.
    doi:10.1103/PhysRevLett.115.023903

    34. Qian, C., X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, and H. Chen, "Experimental observation of superscattering," Phys. Rev. Lett., Vol. 122, 063901, 2019.
    doi:10.1103/PhysRevLett.122.063901

    35. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, "Large singlemolecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photon., Vol. 3, 654-657, 2009.
    doi:10.1038/nphoton.2009.187

    36. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.
    doi:10.1103/PhysRevLett.97.157403

    37. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, 033903, 2008.
    doi:10.1103/PhysRevLett.100.033903

    38. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582-586, 2011.
    doi:10.1038/nmat3030

    39. Kocaman, S., M. Aras, P. Hsieh, J. McMillan, C. Biris, N. Panoiu, M. Yu, D. Kwong, A. Stein, and C. Wong, "Zero phase delay in negative-refractive-index photonic crystal superlattices," Nat. Photon., Vol. 5, 499-505, 2011.
    doi:10.1038/nphoton.2011.129

    40. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286-287, 2013.
    doi:10.1126/science.1235589

    41. Lu, L., H. Gao, and Z. Wang, "Topological one-way fiber of second Chern number," Nat. Commun., Vol. 9, 5384, 2018.
    doi:10.1038/s41467-018-07817-3

    42. Zhou, M., L. Ying, L. Lu, L. Shi, J. Zi, and Z. Yu, "Electromagnetic scattering laws in Weyl systems," Nat. Commun., Vol. 8, 1388, 2017.
    doi:10.1038/s41467-017-01533-0

    43. Wang, C., H. Wang, L. Shen, R. Abdi-Ghaleh, M. Y. Musa, Z. Xu, and B. Zheng, "Structure-induced hyperbolic dispersion in waveguides," IEEE Trans. Antennas & Propagation, Vol. 67, 5463-5468, 2019.
    doi:10.1109/TAP.2019.2916731

    44. Liberal, I., A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, "Photonic doping of epsilon-near-zero media," Science, Vol. 355, 1058-1062, 2017.
    doi:10.1126/science.aal2672

    45. Zhang, Y., Y. Luo, J. B. Pendry, and B. Zhang, "Transformation-invariant metamaterials," Phys. Rev. Lett., Vol. 123, 067701, 2019.
    doi:10.1103/PhysRevLett.123.067701

    46. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, 023903, 2008.
    doi:10.1103/PhysRevLett.100.023903

    47. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero-index optical metamaterial," Nat. Photon., Vol. 7, 791-795, 2013.
    doi:10.1038/nphoton.2013.214

    48. Li, Y., S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero-index metamaterials," Nat. Photon., Vol. 9, 738-742, 2015.
    doi:10.1038/nphoton.2015.198

    49. Chu, H., Q. Li, B. Liu, J. Luo, S. Sun, Z. Hang, L. Zhou, and Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials," Light Sci. Appl., Vol. 7, 50, 2018.
    doi:10.1038/s41377-018-0052-7

    50. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.
    doi:10.1038/ncomms6221

    51. Woessner, A., M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, "Highly confined low-loss plasmons in graphene-boron nitride heterostructures," Nat. Mater., Vol. 14, 421-425, 2015.
    doi:10.1038/nmat4169

    52. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Optics, Vol. 24, 4493-4499, 1985.
    doi:10.1364/AO.24.004493