Vol. 171

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Mechanisms and Modeling of 2D-Materials-Based Resistive Random Access Memory Devices (Invited Review)

By Hao Xie, Zhili Wang, Yanbin Yang, Xiaohui Hu, Hong Liu, and Wei Qi
Progress In Electromagnetics Research, Vol. 171, 171-184, 2021


Resistive random access memory (RRAM) devices are promising candidates for next generation high capacity data storagedue to their superior properties such ascost-effective fabrication, high operating speed, low power consumption, and long data retention. Particularly, the two dimensional (2D)-materials-based RRAM has attracted researchers' attention because of its unique physical and chemical properties without the constraint of lattice matching. In this review, the switching mechanisms and modeling of RRAM devices based on the 2D materials such as hexagonal-boron nitride (h-BN) and graphene are discussed. Firstly, the monolayer and multilayer h-BNRRAMs are introduced, and their mechanisms and compact model are further described. Then, the mechanisms of graphene electrode-based RRAM (GE-RRAM) for different applications are also introduced and compared. Furthermore, the electrical conductivity, multi-physic and compact models of GE-RRAM are introduced. This review paper provides the guidance for the design and optimization of the 2D-materials-based RRAM in the next generation memories.


Hao Xie, Zhili Wang, Yanbin Yang, Xiaohui Hu, Hong Liu, and Wei Qi, "Mechanisms and Modeling of 2D-Materials-Based Resistive Random Access Memory Devices (Invited Review)," Progress In Electromagnetics Research, Vol. 171, 171-184, 2021.


    1. Yang, J. J., D. B. Strukov, and D. R. Stewart, "Memristive devices for computing," Nature Nanotech., Vol. 8, No. 1, 13-24, 2013.

    2. Wong, H.-S. P. and S. Salahuddin, "Memory leads the way to better computing," Nature Nanotech., Vol. 10, No. 3, 191-195, 2015.

    3. Fong, S. W., C. M. Neumann, and H.-S. P. Wong, "Phase-change memory towards a storage-class memory," IEEE Trans. Electron Devices, Vol. 64, No. 11, 4374-4385, 2017.

    4. Yu, S. M., X. M. Guan, and H. S. P. Wong, "On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization," 2011 IEEE International Electron Devices Meeting (IEDM), 2011.

    5. Wang, X. F., H. M. Zhao, Y. Yang, and T. L. Ren, "Graphene resistive random memory - The promising memory device in next generation," Chinese Physics B, Vol. 26, No. 3, 038501, 2017.

    6. Paolo, L., R. Rosario, and I. Fernanda, "Forming kinetics in HfO2-based RRAM cells," IEEE Trans. Electron Devices, Vol. 60, No. 1, 438-443, 2013.

    7. Kim, S. and Y. K. Choi, "A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM," IEEE Trans. Electron Devices, Vol. 56, No. 12, 3049-3054, 2009.

    8. Kumar, D., U. Chand, L. W. Siang, and T. Y. Tseng, "High-performance TiN/Al2O3/ZnO/Al2O3/TiN flexible RRAM device with high bending condition," IEEE Trans. Electron Devices, Vol. 67, No. 2, 493-498, 2020.

    9. Chien, W. C., Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, and C.-Y. Lu, "Unipolar switching behaviors of RTO WOX RRAM," IEEE Electron Devices Letters, Vol. 31, No. 2, 126-128, 2010.

    10. Sung, C., et al., "Investigation of I-V linearity in TaOx-based RRAM devices for neuromorphic applications," IEEE Journal of The Electron Devices Society, Vol. 7, No. 1, 404-408, 2019.

    11. Xie, H. W., Y. T. Liu, and Z. X. Huang, "A NiOx, based threshold switching selector for RRAM crossbar array application," 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019.

    12. Woo, J., et al., "Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems," IEEE Electron Devices Letters, Vol. 37, No. 8, 994-997, 2016.

    13. Wedig, A., M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. K. Adepalli, B. Yildiz, R. Waser, and I. Valov, "Nanoscale cation motion in TaOx, HfOx and TiOx," Nature Nanotech., Vol. 11, No. 1, 67-75, 2016.

    14. Lu, N. D., P. X. Sun, L. Li, Q. Liu, S. B. Long, H. B. Lv, and M. Liu, "Thermal effect on endurance performance of 3-dimensional RRAM crossbar array," Chinese Physics B, Vol. 25, No. 5, 1-5, 2016.

    15. Sohn, J., S. Lee, Z. Jiang, H. Y. Chen, and H. S. P. Wong, "Atomically thin graphene plane electrode for 3D RRAM," 2014 IEEE International Electron Devices Meeting (IEDM), 2014.

    16. Yu, S., H. Y. Chen, B. Gao, J. Kang, and H. S. P. Wong, "HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture," ACS Nano, Vol. 7, No. 3, 2320-2325, 2013.

    17. Ji, Y., S. Lee, B. Cho, S. Song, and T. Lee, "Flexible organic memory devices with multilayer graphene electrodes," ACS Nano, Vol. 5, No. 7, 5995-6000, 2011.

    18. Wang, C. H., et al., "3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150 degrees C) temperature," 2018 IEEE International Electron Devices Meeting (IEDM), 2018.

    19. Pan, C. B., et al., "Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride," Adv. Funct. Mater., Vol. 27, No. 10, 1604811, 2017.

    20. Zhuang, P. P., et al., "Nonpolar resistive switching of multilayer-hBN-based memories," Adv. Electron. Mater., Vol. 6, No. 1, 1900979, 2020.

    21. Ranjan, A., N. Raghavan, S. J. O'Shea, S. Mei, M. Bosman, K. Shubhakar, and K. L. Pey, "Conductive atomic force microscope study of bipolar and threshold resistive switching in 2D hexagonal boron nitride films," Scientific Reports, Vol. 8, 2854, 2018.

    22. Wu, X. H., et al., "Thinnest nonvolatile memory based on monolayer h-BN," Adv. Mater., Vol. 31, No. 15, 1806790, 2019.

    23. Zhu, K. C., et al., "Graphene-boron nitride-graphene cross-point memristors with three stable resistive states," ACS Applied Materials & Interfaces, Vol. 11, No. 41, 37999-38005, 2019.

    24. Zhuang, P. P., W. Z. Ma, J. Liu, W. W. Cai, and W. Y. Lin, "Progressive RESET induced by Joule heating in hBN RRAMs," Appl. Phys. Lett., Vol. 118, No. 14, 143101, 2021.

    25. Lin, W. Y., P. P. Zhuang, D. Akinwande, X. A. Zhang, and W. W. Cai, "Oxygen-assisted synthesis of hBN films for resistive random access memories," Applied Phys. Letters, Vol. 115, No. 7, 073101, 2019.

    26. Palumbo, F., et al., "Bimodal dielectric breakdown in electronic devices using chemical vapor deposited hexagonal boron nitride as dielectric," Advanced Electronic Materials, Vol. 4, No. 3, 1700506, 2018.

    27. Jiang, J. K., K. Parto, W. Cao, and K. Banerjee, "Ultimate monolithic-3D integration with 2D materials: Rationale, prospects, and challenges," IEEE Journal of The Electron Devices Society, Vol. 7, No. 1, 878-887, 2019.

    28. Tian, H., H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and W. H. S. Philip, "Monitoring oxygen movement by raman spectroscopy of resistive random access memory with a graphene-inserted electrode," NANO Letters, Vol. 13, 651-657, 2013.

    29. Lee, K., et al., "Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene," Sci. Rep., Vol. 5, 11279, 2015.

    30. Lee, S., J. Sohn, Z. Z. Jiang, H. Y. Chen, and H.-S. P. Wong, "Metal oxide-resistive memory using graphene-edge electrodes," Nature Commu., Vol. 6, 8407, 2015.

    31. Lee, J., C. Du, K. Sun, E. Kioupakis, and W. D. Lu, "Tuning ionic transport in memristive devices by graphene with engineered nanopores," ACS Nano, Vol. 10, No. 3, 3571-3579, 2016.

    32. Xie, H., W. C. Chen, S. Zhang, G. D. Zhu, A. Khaliq, J. Hu, and W. Y. Yin, "Modeling and simulation of resistive random access memory with graphene electrode," IEEE Trans. Electron Devices, Vol. 67, No. 3, 915-921, 2020.

    33. Alimkhanuly, B., S. Kim, L. W. Kin, and S. Lee, "Electromagnetic analysis of vertical resistive memory with a sub-nm thick electrode," Nanomaterials, Vol. 10, No. 9, 1634, 2020.

    34. Dean, C. R., A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, "Boron nitride substrates for high-quality graphene electronics," Nat. Nanotechnol., Vol. 5, No. 10, 722-726, 2010.

    35. Giovannetti, G., P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, "Substrate-induced band gap in graphene on hexagonal boron nitride:Ab initio density functional calculations," Phys. Rev. B, Vol. 76, No. 7, 073103, 2007.

    36. Weng, Q. H., X. B. Wang, X. Wang, Y. Bando, and D. Golberg, "Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications," Chem. Soc. Rev., Vol. 45, No. 12, 3989-4012, 2016.

    37. Lee, J., T. J. Ha, K. N. Parrish, S. F. Chowdhury, L. Tao, A. Dodabalapur, and D. Akinwande, "High-performance current saturating graphene field-effect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates," IEEE Electron Device Lett., Vol. 34, No. 2, 172-174, 2013.

    38. Jiang, Y., X. Lin, and H. Chen, "Directional polaritonic excitation of circular, huygens and Janus dipoles in graphene-hexagonal boron nitride heterostructures," Progress In Electromagnetics Research, Vol. 170, 169-176, 2021.

    39. Shi, Y., C. Pan, V. Chen, N. Raghavan, K. L. Pey, F. M. Puglisi, E. Pop, H. S. P. Wong, and M. Lanza, "Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses," 2017 IEEE International Electron Devices Meeting (IEDM), 2017.

    40. Tsai, T. M., et al., "Controlling the degree of forming soft-breakdown and producing superior endurance performance by inserting BN-based layers in resistive random access memory," IEEE Electron Devices Letters, Vol. 38, No. 4, 445-448, 2017.

    41. Zhang, D. J., C. H. Yeh, W. Cao, and K. Banerjee, "0.5T0.5R - An ultracompact RRAM cell uniquely enabled by van derWaals heterostructures," IEEE Trans. Electron Devices, Vol. 68, No. 4, 2033-2040, 2021.

    42. Jeong, H., et al., "Resistive switching in few-layer hexagonal boron nitride mediated by defects and interfacial charge transfer," ACS Applied Materials & Interfaces, Vol. 12, No. 41, 46288-46295, 2020.

    43. Tan, C. L. and H. Zhang, "Two-dimensional transition metal dichalcogenide nanosheet-based composites," Chem. Soc. Rev., Vol. 44, No. 9, 2713-2731, 2015.

    44. Rehman, M. M., H. M. N. U. Rehman, J. Z. Gul, W. Y. Kim, K. S. Karimov, and N. Ahmed, "Decade of 2D-materials-based RRAM devices: A review," Science and Technology of Advanced Materials, Vol. 21, No. 1, 147-186, 2020.

    45. Chiang, C. C., V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. H. Chen, and J. Appenzeller, "Memory applications from 2D materials," Applied Physics Reviews, Vol. 8, No. 2, 021306, 2021.

    46. Huang, Y. J. and S. C. Lee, "Graphene/h-BN heterostructures for vertical architecture of rram design," Scientific Reports, Vol. 7, 9679, 2017.

    47. Pan, C. B., et al., "Model for multi-filamentary conduction in graphene/hexagonal-boron-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices," 2D Materials, Vol. 4, No. 2, 025099, 2017.

    48. Zhang, H. H., P. P. Wang, S. Zhang, L. Li, P. Li, W. E. I. Sha, and L. J. Jiang, "Electromagnetic-circuital-thermal multiphysics simulation method: A review," Progress In Electromagnetics Research, Vol. 169, 87-101, 2020.

    49. Duan, H., W. Fang, W.-Y. Yin, E. Li, and W. Chen, "Computational investigation of nanoscale semiconductor devices and optoelectronic devices from the electromagnetics and quantum perspectives by the finite difference time domain method," Progress In Electromagnetics Research, Vol. 170, 63-78, 2021.

    50. Seo, S., J. Lim, S. Lee, B. Alimkhanuly, A. Kadyrov, D. Jeon, and S. Lee, "Graphene-edge electrode on a Cu-based chalcogenide selector for 3D vertical memristor cells," ACS Appl. Mater. Interfaces, Vol. 11, No. 46, 43466-43472, 2019.

    51. Bai, Y., H. Wu, K. Wang, R. Wu, L. Song, T. Li, J. Wang, Z. Yu, and H. Qian, "Stacked 3D RRAM array with graphene/CNT as edge electrodes," Sci. Rep., Vol. 5, 13785, 2015.

    52. Mannequi, C., A. Delamoreanu, L. Latu-Romain, V. Jousseaume, H. Grampeix, S. David, C. Rabot, A. Zenasni, C. Vallee, and P. Gonona, "Graphene-HfO2-based resistive RAM memories," Microelectronic Engineering, Vol. 161, 82-86, 2016.

    53. Zhao, H., H. Tu, F. Wei, and J. Du, "Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application," IEEE Trans. Electron Dev., Vol. 61, No. 5, 1388-1393, 2014.

    54. Yao, J., J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, and J. M. Tour, "Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene," Nature Commu., Vol. 3, 1101, 2012.

    55. Yang, K., W. Y. Chang, P. Y. Teng, S. F. Jeng, S. J. Lin, P. W. Chiu, and J. H. He, "Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects," Proc. IEEE, Vol. 101, No. 7, 1732-1739, 2013.

    56. Hui, F., E. Grustan-Gutierrez, S. Long, Q. Liu, A. K. Ott, A. C. Ferrari, and M. Lanza, "Graphene and related materials for resistive random access memories," Adv. Electron. Mater., Vol. 3, No. 8, 600195, 2017.

    57. Liu, Y., S. B. Long, Q. Liu, H. B. Lv, and M. Liu, "Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials," Small, Vol. 13, No. 35, 1604306, 2017.

    58. Kim, J., D. Kim, Y. Jo, J. Han, H. Woo, H. Kim, K. K. Kim, J. P. Hong, and H. Im, "Impact of graphene and single-layer BN insertion on bipolar resistive switching characteristics in tungsten oxide resistive memory," Thin Solid Films, Vol. 589, 188-193, 2015.

    59. Qian, M., Y. Pan, F. Liu, M. Wang, H. Shen, D. He, B. Wang, Y. Shi, F. Miao, and X. Wang, "Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface," Adv. Mater, Vol. 26, No. 20, 3275-3281, 2014.

    60. Jung, I., D. A. Dikin, R. D. Piner, and R. S. Rouff, "Tunable electrical conductivity of individual graphene oxide sheets reduced at ``low'' temperatures," Nano Letters, Vol. 8, No. 12, 4283-4287, 2008.

    61. Pan, F., S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science & Engineering R-Reports, Vol. 83, 1-59, 2014.

    62. Chen, X., et al., "Controlled nonvolatile transition in polyoxometalates-graphene oxide hybrid memristive devices," Adv. Mater. Technol., Vol. 4, No. 3, 1800551, 2019.

    63. Chen, C., C. Song, J. Yang, F. Zeng, and F. Pan, "Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure," Appl. Phys. Lett., Vol. 100, No. 25, 253509, 2012.

    64. Chen, H. Y., et al., "Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory," Nanotechnology, Vol. 24, No. 46, 465201, 2013.

    65. Li, S., W. Chen, Y. Luo, J. Hu, P. Gao, J. Ye, K. Kang, H. Chen, E. Li, and W. Y. Yin, "Fully coupled multiphysics simulation of crosstalk effect in bipolar resistive random access memory," IEEE Trans. Electron Devices, Vol. 9, No. 64, 3647-3653, 2017.

    66. Wan, S. and Q. Cheng, "Role of interface interactions in the construction of GO-based artificial nacres," Adv. Materials Interfaces, Vol. 5, No. 12, 1800107, 2018.

    67. Punckt, C., F. Muckel, S. Wolff, I. A. Aksay, C. A. Chavarin, G. Bacher, and W. Mertin, "The effect of degree of reduction on the electrical properties of functionalized graphene sheets," Appl. Phys. Lett., Vol. 102, No. 2, 023114, 2013.