Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-22

Tunable High-Q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)

By Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian
Progress In Electromagnetics Research, Vol. 172, 23-32, 2021
doi:10.2528/PIER21112006

Abstract

Micro-nano opto-electronic devices are demanded to be highly efficient and capable of multiple working wavelengths in several light-matter interaction applications, which is a challenge to surface plasmonics owing to the relatively higher intrinsic loss and larger dispersion. To cross the barriers, a plasmonic metasurface combining both high Q-factors (highest Q > 800) and multiple resonant wavelengths is proposed by arranging step-staged pyramid units in lattice modes. Different numerical relations for nonlinear frequency conversions have been constructed because of its strong tunability. Also, characteristics of high radiation efficiency (> 50%) and largelocalized optical density of state (> 104) have been proved through the numerical simulation. Such tunable high-Q metasurface can be implemented to quantum nonlinear process and enable the strong light-matter interaction devices into reality.

Citation


Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian, "Tunable High-Q Plasmonic Metasurface with Multiple Surface Lattice Resonances (Invited)," Progress In Electromagnetics Research, Vol. 172, 23-32, 2021.
doi:10.2528/PIER21112006
http://www.jpier.org/PIER/pier.php?paper=21112006

References


    1. Fernández-Domínguez, A., A., F. Garcia-Vidal, and L. Martín-Moreno, "Unrelenting plasmons," Nat. Photonics, Vol. 11, 8-10, 2017.
    doi:10.1038/nphoton.2016.258

    2. De Bruijn, H. E., R. P. H. Kooyman, and J. Greve, "Choice of metal and wavelength for surface-plasmon resonance sensors: Some considerations," Appl. Opt., Vol. 31, 440-442, 1992.
    doi:10.1364/AO.31.0440_1

    3. Arbabi, A., et al., "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nat. Commun., Vol. 7, 13682, 2016.
    doi:10.1038/ncomms13682

    4. Li, L., et al., "Metalens-array-based high-dimensional and multiphoton quantum source," Science, Vol. 368, 1487-1490, 2020.
    doi:10.1126/science.aba9779

    5. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.
    doi:10.1038/nmat3839

    6. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.
    doi:10.1021/jp026731y

    7. Liu, H. and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature, Vol. 452, 728-731, 2008.
    doi:10.1038/nature06762

    8. Zhao, Y. and A. Alù, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B, Vol. 84, 205428, 2011.
    doi:10.1103/PhysRevB.84.205428

    9. Karimi, E., et al., "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light Sci. Appl., Vol. 3, e167, 2014.
    doi:10.1038/lsa.2014.48

    10. Alipour, A., A. Farmani, and A. Mir, "High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface," IEEE Sens. J., Vol. 18, 7047-7054, 2018.
    doi:10.1109/JSEN.2018.2854882

    11. Vaskin, A., R. Kolkowski, A. F. Koenderink, and I. Staude, "Light-emitting metasurfaces," Nanophotonics, Vol. 8, 1151-1198, 2019.
    doi:10.1515/nanoph-2019-0110

    12. Kamali, S. M., E. Arbabi, A. Arbabi, and A. Faraon, "A review of dielectric optical metasurfaces for wavefront control," Nanophotonics, Vol. 7, 1041-1068, 2018.
    doi:10.1515/nanoph-2017-0129

    13. Emani, N. K., et al., "High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths," Appl. Phys. Lett., Vol. 111, 221101, 2017.
    doi:10.1063/1.5007007

    14. Purcell, E. M., Confined Electrons and Photons: New Physics and Applications, 839, E. Burstein and C. Weisbuch, Springer US, Boston, MA, 1995.
    doi:10.1007/978-1-4615-1963-8_40

    15. Schuller, J. A., et al., "Plasmonics for extreme light concentration and manipulation," Nat. Mater., Vol. 9, 193-204, 2010.
    doi:10.1038/nmat2630

    16. Agio, M. and D. M. Cano, "The Purcell factor of nanoresonators," Nat. Photonics, Vol. 7, 674-675, 2013.
    doi:10.1038/nphoton.2013.219

    17. Boriskina, S. V., T. A. Cooper, L. Zeng, G. W. Ni, and C. Gang, "Losses in plasmonics: From mitigating energy dissipation to embracing loss-enabled functionalities," Adv. Opt. Photonics, Vol. 9, 775-827, 2017.
    doi:10.1364/AOP.9.000775

    18. Aouani, H., et al., "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
    doi:10.1021/nl302665m

    19. Walmsley, I. A., "Quantum optics: Science and technology in a new light," Science, Vol. 348, 525-530, 2015.
    doi:10.1126/science.aab0097

    20. Zhang, Q., S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Lett., Vol. 14, 5995-6001, 2014.
    doi:10.1021/nl503057g

    21. Chen, J., F. Gan, Y. Wang, and G. Li, "Plasmonic sensing and modulation based on fano resonances," Adv. Opt. Photonics, Vol. 6, 1701152, 2018.

    22. Ma, R., R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
    doi:10.1038/nmat2919

    23. Kravets, V. G., A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, "Plasmonic surface lattice resonances: A review of properties and applications," Chem. Rev., Vol. 118, 5912-5951, 2018.
    doi:10.1021/acs.chemrev.8b00243

    24. Bin-Alam, M. S., et al., "Ultra-high-Q resonances in plasmonic metasurfaces," Nat. Commun., Vol. 12, 974, 2021.
    doi:10.1038/s41467-021-21196-2

    25. Hakala, T. K., et al., "Bose-Einstein condensation in a plasmonic lattice," Nat. Phys., Vol. 14, 739-744, 2018.
    doi:10.1038/s41567-018-0109-9

    26. Huttunen, M., et al., "Efficient nonlinear metasurfaces by using multiresonant high-Q plasmonic arrays," J. Opt. Soc. Am. B, Vol. 36, E30, 2019.
    doi:10.1364/JOSAB.36.000E30

    27. Kinkhabwala, A., et al., "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photonics, Vol. 3, 654-657, 2009.
    doi:10.1038/nphoton.2009.187

    28. Hsu, C. W., et al., "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 3152, 2014.
    doi:10.1038/ncomms4152

    29. Krasnok, A., M. Tymchenko, and A. Alù, "Nonlinear metasurfaces: A paradigm shift in nonlinear optics," Mater., Vol. 21, 8-21, 2018.

    30. Reshef, O., et al., "Multiresonant high-Q plasmonic metasurfaces," Nano Lett., Vol. 19, 6429-6434, 2019.
    doi:10.1021/acs.nanolett.9b02638

    31. Purcell, E. and C. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
    doi:10.1086/152538

    32. Sauvan, C., J. Hugonin, I. Maksymov, and P. Lalanne, "Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators," Phys. Rev. Lett., Vol. 110, 2013.
    doi:10.1103/PhysRevLett.110.237401

    33. Kwiat, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A, Vol. 60, R773, 1999.
    doi:10.1103/PhysRevA.60.R773

    34. Reimer, C., et al., "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun., Vol. 6, 8236, 2015.
    doi:10.1038/ncomms9236

    35. Saffman, M. and T. G. Walker, "Creating single-atom and single-photon sources from entangled atomic ensembles," Phys. Rev. A, Vol. 66, 065403, 2002.
    doi:10.1103/PhysRevA.66.065403

    36. Lu, D., J. Kan, E. Fullerton, and Z. Liu, "Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials," Nat. Nanotechnol., Vol. 9, 48-53, 2014.
    doi:10.1038/nnano.2013.276

    37. Vieu, C., et al., "Electron beam lithography: Resolution limits and applications," Appl. Surf. Sci., Vol. 164, 111-117, 2000.
    doi:10.1016/S0169-4332(00)00352-4

    38. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
    doi:10.2528/PIER20072201

    39. Zhong, H.-S., et al., "Quantum computational advantage using photons," Science, Vol. 370, 1460-1463, 2020.
    doi:10.1126/science.abe8770