Vol. 174

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-29

Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar Structures

By Lu Song, Lian Shen, and Huaping Wang
Progress In Electromagnetics Research, Vol. 174, 23-32, 2022
doi:10.2528/PIER22040301

Abstract

We propose the squeezing of hyperbolic polaritonic rays in cylindrical lamellar structures with hyperbolic dispersion. This efficient design is presented through conformal mapping transformation by combining with circular effective-medium theory (CEMT) that is adopted to predict the optical response of concentric cylindrical binary metal-dielectric layers. The volume-confined hyperbolic polaritons supported in these cylindrical lamellar structures could be strongly squeezed when they propagate toward the origin since their wavelength shortens, and velocity decreases. To demonstrate the importance of using CEMT for engineering highly-squeezed hyperbolic polaritons, both CEMT and planar effective-medium theory (PEMT) are utilized to design the cylindrical lamellar structures. It is shown that the PEMT-based design is unable to achieve hyperbolic polaritons squeezing even with a sufficiently large number of metal-dielectric binary layers. Remarkably, this study opens new opportunities for hyperbolic polaritons squeezing, and the findings are promising for propelling nanophotonics technologies and research endeavours.

Citation


Lu Song, Lian Shen, and Huaping Wang, "Squeezing of Hyperbolic Polaritonic Rays in Cylindrical Lamellar Structures," Progress In Electromagnetics Research, Vol. 174, 23-32, 2022.
doi:10.2528/PIER22040301
http://www.jpier.org/PIER/pier.php?paper=22040301

References


    1. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photonics, Vol. 2, No. 4, 226, 2008.
    doi:10.1038/nphoton.2008.30

    2. Yuan, Z., B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science, Vol. 295, 102, 2002.
    doi:10.1126/science.1066790

    3. Akimov, A. V., A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature, Vol. 450, 402, 2007.
    doi:10.1038/nature06230

    4. Park, I. Y., S. Kim, J. Choi, D. H. Lee, Y. J. Kim, M. F. Kling, M. I. Stockman, and S. W. Kim, "Plasmonic generation of ultrashort extreme-ultraviolet light pulses," Nat. Photonics, Vol. 5, 677, 2011.
    doi:10.1038/nphoton.2011.258

    5. Sederber, S. and A. Y. Elezzabi, "Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide," Phys. Rev. Lett., Vol. 113, 167401, 2014.
    doi:10.1103/PhysRevLett.113.167401

    6. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
    doi:10.2528/PIER20072201

    7. Aouani, H., M. Rahmani, M. Navarro-Cía, and S. A. Maier, "Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna," Nat. Nanotechnol., Vol. 9, 290, 2014.
    doi:10.1038/nnano.2014.27

    8. Kim, S., J. Jin, Y. J. Kin, I. Y. Park, Y. Kim, and S. W. Kim, "High-harmonic generation by resonant plasmon eld enhancement," Nature, Vol. 453, 757, 2008.
    doi:10.1038/nature07012

    9. Beneck, R. J., A. Das, G. Mackertich-Sengerdy, R. J. Chaky, Y. Wu, S. Soltani, and D. Werner, "Reconfigurable antennas: A review of recent progress and future prospects for next generation," Progress In Electromagnetics Research, Vol. 171, 89-121, 2021.

    10. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012.
    doi:10.1038/nphoton.2012.277

    11. Stockman, M. I., "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 93, 137404, 2004.
    doi:10.1103/PhysRevLett.93.137404

    12. Srituravanich, W., L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol., Vol. 3, 733, 2008.
    doi:10.1038/nnano.2008.303

    13. Wagner, C. and N. Harned, "Lithography gets extreme," Nat. Photonics, Vol. 4, 24, 2010.
    doi:10.1038/nphoton.2009.251

    14. Sternbach, A. J., S. H. Chae, S. Latini, A. A. Rikhter, Y. Shao, B. Li, D. Rhodes, B. Kim, P. J. Schuck, X. Xu, X. Y. Zhu, R. D. Averitt, H. Hone, M. M. Fogler, A. Rubio, and D. N. Basov, "Programmable hyperbolic polaritons in van der Waals semiconductors," Science, Vol. 371, 5529, 2021.

    15. Chen, M., X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, and S. Dai, "Configurable phonon polaritons in twisted α-MoO3," Nat. Mater., Vol. 19, 1307, 2020.
    doi:10.1038/s41563-020-0732-6

    16. Sedov, E. S., I. V. Iorsh, S. M. Arakelian, A. P. Alodjants, and A. Kavokin, "Hyperbolic metamaterials with Bragg polaritons," Phys. Rev. Lett., Vol. 114, 237402, 2015.
    doi:10.1103/PhysRevLett.114.237402

    17. Yoxall, E., M. Schnell, A. Y. Nikitin, O. Txoperena, A. Woessner, M. B. Lundeberg, F. Casanova, L. E. Hueso, F. H. Koppens, and R. Hillenbrand, "Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity," Nat. Photonics, Vol. 9, 674, 2015.
    doi:10.1038/nphoton.2015.166

    18. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.
    doi:10.1038/ncomms6221

    19. Li, P., M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, "Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing," Nat. Commun., Vol. 6, 7507, 2015.
    doi:10.1038/ncomms8507

    20. Dai, S., Q. Ma, T. Andersen, A. Mcleod, Z. Fei, M. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, "Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material," Nat. Commun., Vol. 6, 6963, 2015.
    doi:10.1038/ncomms7963

    21. Alfaro-Mozaz, F. J., P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L. E. Hueso, P. Li, A. Y. Nikitin, and R. Hillenbrand, "Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas," Nat. Commun., Vol. 8, 15624, 2017.
    doi:10.1038/ncomms15624

    22. Shen, L., X. Lin, M. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.
    doi:10.1063/1.5141275

    23. Ishii, S., A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, "Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium," Laser & Photon. Rev., Vol. 7, 265, 2013.
    doi:10.1002/lpor.201200095

    24. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 5819, 1686, 2007.

    25. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
    doi:10.1038/ncomms1148

    26. Sun, J., M. I. Shalaev, and N. M. Litchinitser, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nat. Commun., Vol. 6, 7201, 2015.
    doi:10.1038/ncomms8201

    27. Xiong, Y., Z. Liu, and X. Zhang, "Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers," Appl. Phys. Lett., Vol. 93, 111116, 2008.
    doi:10.1063/1.2985898

    28. Shen, L., A. V. Kildishev, and H. Chen, "Designing optimal nanofocusing with a gradient hyperlens," Nanophotonics, Vol. 7, 479, 2018.

    29. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
    doi:10.1364/OE.14.008247

    30. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
    doi:10.1126/science.1125907

    31. Leonhardt, U., "Optical conformal mapping," Science, Vol. 23, 1777, 2006.
    doi:10.1126/science.1126493

    32. Shen, L., B. Zheng, Z. Liu, Z. Wang, S. Lin, S. Dehdashti, E. Li, and H. Chen, "Large-scale far-infrared invisibility cloak hiding object from thermal detection," Adv. Opt. Mater., Vol. 112, 7635, 2015.

    33. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, 2652, 2013.
    doi:10.1038/ncomms3652

    34. Chen, H., B. Wu, B. Zhang, and J. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
    doi:10.1103/PhysRevLett.99.063903

    35. Xi, S., H. Chen, B. Wu, and J. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 131, 2009.
    doi:10.1109/LMWC.2009.2013677

    36. Zhang, B., H. Chen, B. Wu, and J. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, 2008.
    doi:10.1103/PhysRevLett.100.063904

    37. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, 383, 2020.
    doi:10.1038/s41566-020-0604-2

    38. Xu, S., X. Cheng, S. Xi, R. Zhang, H. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, "Experimental demonstration of a free space cylindrical cloak without superluminal propagation," Phys. Rev. Lett., Vol. 109, 223903, 2012.
    doi:10.1103/PhysRevLett.109.223903

    39. Aubry, A., D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, "Plasmonic light-harvesting devices over the whole visible spectrum," Nano Lett., Vol. 10, 2574, 2010.
    doi:10.1021/nl101235d

    40. Pendry, J. B., A. I. Fernández-Domínguez, Y. Luo, and R. Zhao, "Capturing photons with transformation optics," Nat. Phys., Vol. 9, 518, 2013.
    doi:10.1038/nphys2667

    41. Luo, Y., D. Y. Lei, S. A. Maier, and J. B. Pendry, "Broadband light harvesting nanostructures robust to edge bluntness," Phys. Rev. Lett., Vol. 108, 023901, 2012.
    doi:10.1103/PhysRevLett.108.023901

    42. Yeh, P., A. Yariv, and E. Marom, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, 423, 1977.
    doi:10.1364/JOSA.67.000423

    43. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

    44. Elser, J. and V. A. Podolskiy, "Nonlocal effects in effective-medium response of nanolayered metamaterials," Appl. Phys. Lett., Vol. 90, 191109, 2007.
    doi:10.1063/1.2737935

    45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, 1972.
    doi:10.1103/PhysRevB.6.4370

    46. Johnson, R. W., A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: From fundamentals to applications," Mater. Today, Vol. 17, 236-246, 2016.

    47. Bassim, N., K. Scott, and L. A. Giannuzzi, "Recent advances in focused ion beam technology and applications," MRS Bulletin, Vol. 39, 317-325, 2014.
    doi:10.1557/mrs.2014.52