PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 1 > pp. 135-145

PERFORMANCE IMPROVEMENT IN AMPLITUDE SYNTHESIS OF UNEQUALLY SPACED ARRAY USING LEAST MEAN SQUARE METHOD

By S. Kazemi, H. R. Hassani, G. R. Dadashzadeh, and F. G. Gharakhili

Full Article PDF (130 KB)

Abstract:
In this paper, an efficient method to obtain the elements current distribution for a non uniformly spaced array is presented. For a given far field pattern, after sampling the array factor the proposed method uses the least mean square error technique to solve the system ofequations rather than solving the previously published Legendre function method. It's shown that the average side lob level obtained by this proposed method is some 5 dB lower in comparison with the existing Legendre function method ofsolution. Ifthe Legendre function method published in the literature is to be used to solve for the current distribution, in the final part ofthis paper, a criteria on how to choose suitable vectors that would result in a 3 dB lower side lobe level performance will be provided.

Citation: (See works that cites this article)
S. Kazemi, H. R. Hassani, G. R. Dadashzadeh, and F. G. Gharakhili, "Performance Improvement in Amplitude Synthesis of Unequally Spaced Array Using Least Mean Square Method," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
doi:10.2528/PIERB07103002

References:
1. Unz, H., "Linear arrays with arbitrarily distributed elements," IEEE Trans. Antennas & Propagat., Vol. 8, 222-223, 1960.
doi:10.1109/TAP.1960.1144829

2. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IEEE Trans. Antennas Propagat., Vol. 9, 187, 1961.
doi:10.1109/TAP.1961.1144961

3. Ishimaru, A., "Theory ofunequally-spaced arrays," IEEE Trans. Antennas & Propagat., Vol. 10, 691-702, 1962.
doi:10.1109/TAP.1962.1137952

4. Skolnik, M. I., G. Nemhauser, and J. W. Sherman III, "Dynamic programming applied to unequally spaced arrays," IEEE Trans. Antennas & Propagat., Vol. 12, 35-43, 1964.
doi:10.1109/TAP.1964.1138163

5. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas & Propagat., Vol. 39, 436-447, 1991.
doi:10.1109/8.81455

6. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas & Propagat., Vol. 42, 993-999, 1994.
doi:10.1109/8.299602

7. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed side lobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

8. Kumar, B. P. and G. R. Branner, "Design ofunequally spaced arrays for performance improvement," IEEE Trans. Antennas & Propagat., Vol. 47, No. 3, 1999.

9. Zhou, Y. P. and M. A. Ingram, "Pattern synthesis for arbitrary arrays using an adaptive array method," IEEE Trans. Antennas & Propagat., Vol. 47, No. 5, 1999.

10. Olen, C. A. and R. T. Compton Jr., "A numerical pattern synthesis algorithm for arrays," IEEE Trans. Antennas & Propagat., Vol. 38, 1666-1676, 1990.
doi:10.1109/8.59781

11. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use ofBees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

12. Mouhamadou, M., P. Vaudon, and M. Rammal, "Smart antenna array patterns synthesis null steering and multi user beam forming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801


© Copyright 2010 EMW Publishing. All Rights Reserved