PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 3 > pp. 35-46

BREAST CANCER DETECTION USING A HYBRID FINITE DIFFERENCE FREQUENCY DOMAIN AND PARTICLE SWARM OPTIMIZATION TECHNIQUES

By S. H. Zainud-Deen, W. M. Hassan, E. Hassan, and K. H. Awadalla

Full Article PDF (311 KB)

Abstract:
A hybrid technique based on Finite-difference frequency domain and particle swarm optimization techniques is proposed to reconstruct the breast cancer cell dimension and determines its position. Finite-difference frequency domain is formulated to calculate the scattered field after illuminating the breast by a microwave transmitter. Two-dimensional and three-dimensional models for the breast are used. The models include randomly distributed fatty breast tissue, glandular tissue, 2-mm thick skin, as well as chest wall tissue. The models are characterized by the dielectric properties of the normal breast tissue and malignant tissue at 800 MHz. Computer simulations have been performed by means of a numerical program; results show the capabilities of the proposed approach.

Citation: (See works that cites this article)
S. H. Zainud-Deen, W. M. Hassan, E. Hassan, and K. H. Awadalla, "Breast Cancer Detection Using a Hybrid Finite Difference Frequency Domain and Particle Swarm Optimization Techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703
http://www.jpier.org/pierb/pier.php?paper=07112703

References:
1. Gunnarsson, T., Microwave imaging of biological tissues: Applied toward breast tumor detection, No. 73, Sweden, 2007.

2. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoiewski, and M. A. Stuchly, "Enhancing breast tumor detection with near-field imaging," IEEE Microw. Magazine, Vol. 3, No. 1, 48-56, 2002.
doi:10.1109/6668.990683

3. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Brgan, G. A. Ybarra, L. W. Nolte, and W. T. Joines, "Active microwave imaging I — 2-D forward and inverse scattering methods," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256

4. Qi, H. R. and N. A. Diakides, Thermal infrared imaging in early breast cancer detection—A survey of recent research, Proceeding of 25th Annual International Conference of IEEE, Vol. 2, No. 17–21, 1109-1112, 2003.

5. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Matew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 169-419, 2006.

6. Yan, L., K. Huang, and C. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

7. Wu, B.-I., F. C. Cox, and J. A. Kong, "Experimental methodology for non-thermal effects of electromagnetic radiation on biologics," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

8. Semenov, S. Y., et al., "Microwave tomography: Two-dimensional systemfor biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, 869-877, 1996.
doi:10.1109/10.532121

9. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Two-dimensional FDTD analysis of a pulsed microwave confocal systemfor breast cancer detection: Fixed focus and antenna array sensors," IEEE Transactions of Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

10. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Eletromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

11. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal systemfor breast cancer detection: Design of an antenna array element," IEEE Transactions of Antennas and Propagation, Vol. 47, 783-791, 1999.
doi:10.1109/8.774131

12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-821, 2002.
doi:10.1109/TBME.2002.800759

13. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility of breast tumor detection and localization," IEEE MTT-S Digest, 383-386, 2003.

14. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630

15. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, A. G. Nazarov, Y. E. Sizov, and G. P. Tatsis, "Microwave tomography: A two-dimensional newton iterative scheme," IEEE Trans. Microw. Theory Tech., Vol. 46, 1654-1659, 1998.
doi:10.1109/22.734548

16. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Trans. Med. Imag., Vol. 9, 218-225, 1990.
doi:10.1109/42.56334

17. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 52, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

18. Xiao, F. and H. Yabe, "Microwave imaging of perfect conducting cylinders fromreal data by micro genetic algorithmcoupled with deterministic method," IEICE Trans. Electron., Vol. E81-C, 1784-1792, 1998.

19. Liu, X.-F., Y.-B. Chen, Y.-C. Jiao, and F.-S. Zhang, "Modified particle swarmoptim ization for patch antenna a design based on IE3D," Journal of Eletromagnetic Waves and Applications, Vol. 21, No. 13, 1819-1828, 2007.

20. Al-Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering fromthree dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 666-673, 2006.
doi:10.1109/TAP.2005.863129

21. Zainud-Deen, S. H., M. S. Ibrahim, and E. El-Deen, "A hybrid finite difference frequency domain and particle swarm optimization techniques for forward and inverse electromagnetic scattering problems," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1575-1580, 2007.

22. Zainud-Deen, S. H., E. El-Deen, and M. S. Ibrahem, "Electromagnetic scattering by conducting/dielectric objects," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1866-1871, 2007.

23. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetics waves," J. Comput. Phys., Vol. 144, 185-200, 1994.
doi:10.1006/jcph.1994.1159

24. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969

25. Macea, J. R. and J. H. T. G. Fregnani, "Anatomy of thorocic wall, axillo and breast," Int. J. Morphol., 691-704, 2006.

26. Breast evaluation and treatment prevention early detection of breast cancer, University of Maryland Marlene and Stewart GreenebaumCancer Center, 2005.

27. Zhang, Z. Q. and Q. H. Liu, Microwave imaging for breast tumor: 2D forward and inverse methods, IEEE Antennas Propag. Society International Symposium, Vol. 1, 242-245, 2001.

28. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stocia, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058

29. Hagness, S. C., A. Taflove, and J. E. bridges, "FDTD modeling of a coherent- addition antenna array for early-stage detection of breast cancer," IEEE Antennas Propag. Society International Symposium, Vol. 2, 1220-1223, 1998.


© Copyright 2010 EMW Publishing. All Rights Reserved