PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 3 > pp. 157-172

AN INTEGRAL EQUATION MODELING OF ELECTROMAGNETIC SCATTERING FROM THE SURFACES OF ARBITRARY RESISTANCE DISTRIBUTION

By S. Hatamzadeh and M. Naser-Moghadasi

Full Article PDF (162 KB)

Abstract:
In this paper the problem of electromagnetic scattering from the resistive surfaces is carefully surveyed. We model this problem by the integral equations of the second kind. A new set of orthogonal basis functions is used to solve these integral equations via collocation method. Numerical solutions of these equations are given for some cases of resistance distributions. Presented method in this paper can be easily generalized to apply to other cases.

Citation: (See works that cites this article)
S. Hatamzadeh and M. Naser-Moghadasi, "An Integral Equation Modeling of Electromagnetic Scattering from the Surfaces of Arbitrary Resistance Distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404
http://www.jpier.org/pierb/pier.php?paper=07121404

References:
1. Wilton, D. R. and C. M. Butler, "Effective methods for solving integral and integro-differential equations," Electromagnetics, Vol. 1, 289-308, 1981.
doi:10.1080/02726348108915136

2. Harrington, R. F., "Matrix methods for field problems," Proc. IEEE, Vol. 55, No. 2, 136-149, 1967.
doi:10.1109/PROC.1967.5433

3. Mishra, M. and N. Gupta, "Monte carlo integration technique for the analysis of electromagnetic scattering from conducting surfaces," Progress In Electromagnetics Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005

4. Arnold, M. D., "An efficient solution for scattering by a perfectly conducting strip grating," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905

5. Zhao, J. X., "Numerical and analytical formulations of the extended MIE theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.
doi:10.1163/156939306776149815

6. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390

7. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

8. Hussein, K. F. A., "Efficient near-field computation for radiation and scattering from conducting surfaces of arbitrary shape," Progress In Electromagnetics Research, Vol. 69, 267-285, 2007.
doi:10.2528/PIER07010302

9. Hussein, K. F. A., "Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502

10. Kishk, A. A., "Electromagnetic scattering from composite objects using a mixture of exact and impedance boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 6, 826-833, 1991.
doi:10.1109/8.86883

11. Caorsi, S., A. Massa, and M. Pastorino, "A numerical solution to full-vector electromagnetic scattering by three-dimensional nonlinear bounded dielectrics," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 2, 428-436, 1995.
doi:10.1109/22.348105

12. Shore, R. A. and A. D. Yaghjian, "Dual-surface integral equations in electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1706-1709, 2005.
doi:10.1109/TAP.2005.846806

13. Yla-Oijala, P. and M. Taskinen, "Well-conditioned Muller formulation for electromagnetic scattering by dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3316-3323, 2005.
doi:10.1109/TAP.2005.856313

14. Li, L. W., P. S. Kooi, Y. L. Qin, T. S. Yeo, and M. S. Leong, "Analysis of electromagnetic scattering of conducting circular disk using a hybrid method," Progress In Electromagnetics Research, Vol. 20, 101-123, 1998.
doi:10.2528/PIER97111200

15. Liu, Y. and K. J. Webb, "On detection of the interior resonance errors of surface integral boundary conditions for electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 6, 939-943, 2001.
doi:10.1109/8.931152

16. Kishk, A. A., "Electromagnetic scattering from transversely corrugated cylindrical structures using the asymptotic corrugated boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 3104-3108, 2004.
doi:10.1109/TAP.2004.835234

17. Tong, M. S. and W. C. Chew, "Nystrom method with edge condition for electromagnetic scattering by 2D open structures," Progress In Electromagnetics Research, Vol. 62, 49-68, 2006.
doi:10.2528/PIER06021901

18. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008.
doi:10.2528/PIER07092206

19. Frangos, P. V. and D. L. Jaggard, "Analytical and numerical solution to the two-potential Zakharov-Shabat inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 399-404, 1992.
doi:10.1109/8.138841

20. Barkeshli, K. and J. L. Volakis, "Electromagnetic scattering from thin strips --- Part II: Numerical solution for strips of arbitrary size," IEEE Transactions on Education, Vol. 47, No. 1, 107-113, 2004.
doi:10.1109/TE.2003.818275

21. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

22. Zahedi, M. M. and M. S. Abrishamian, "Scattering from semi-elliptic channel loaded with impedance elliptical cylinder," Progress In Electromagnetics Research, Vol. 79, 47-58, 2008.
doi:10.2528/PIER07091803

23. Zaki, K. A. and A. R. Neureuther, "Scattering from a perfectly conducting surface with a sinusoidal height profile: TE polarization," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 2, 208-214, 1971.
doi:10.1109/TAP.1971.1139908

24. Carpentiery, B., "Fast iterative solution methods in electromagnetic scattering," Progress In Electromagnetics Research, Vol. 79, 151-178, 2008.
doi:10.2528/PIER07100802

25. Du, Y., Y. L. Luo, W. Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

26. Umashankar, K. R., S. Nimmagadda, and A. Taflove, "Numerical analysis of electromagnetic scattering by electrically large objects using spatial decomposition technique," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 867-877, 1992.
doi:10.1109/8.163424

27. Gokten, M., A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering analysis using the two-dimensional MRFD formulation," Progress In Electromagnetics Research, Vol. 79, 387-399, 2008.
doi:10.2528/PIER07102407

28. Delves, L. M. and J. L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.

29. Bancroft, R., Understanding Electromagnetic Scattering Using the Moment Method, Artech House, London, 1996.

30. Deb, A., A. Dasgupta, and G. Sarkar, "A new set of orthogonal functions and its application to the analysis of dynamic systems," Journal of the Franklin Institute, Vol. 343, 1-26, 2006.
doi:10.1016/j.jfranklin.2005.06.005


© Copyright 2010 EMW Publishing. All Rights Reserved