1. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Phys. Rev., Vol. 56, No. 1, 99-107, 1939.
doi:10.1103/PhysRev.56.99 Google Scholar
2. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648 Google Scholar
3. Tai, C. T., "Direct integration of field equations," Progress In Electromagnetics Research, Vol. 28, 339-359, 2000.
doi:10.2528/PIER99101401 Google Scholar
4. Borel, S., D. P. Levadoux, and F. Alouges, "A new wellconditioned integral formulation for Maxwell equations in three dimensions," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 2995-3004, 2005.
doi:10.1109/TAP.2005.854561 Google Scholar
5. Sheng, X. Q., J. M. Jin, J. Song, W. C. Chew, and C. C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, No. 11, 1718-1726, 1998.
doi:10.1109/8.736628 Google Scholar
6. Harrington, R. F., Time-harmonic Electromagnetic Fields, Wiley, 2001.
7. Sauter, S. and C. Schwab, Randelementmethoden, BG Teubner, 2004.
8. Steinbach, O., Numerische Naherungsverfahren fur elliptische Randwertprobleme, Advances in Numerical Mathematics, BG Teubner, 2003.
9. Hiptmair, R., "Coupling of finite elements and boundary elements in electromagnetic scattering," SIAM J. Numer. Anal., Vol. 41, 919-944, 2003.
doi:10.1137/S0036142901397757 Google Scholar
10. Buffa, A. and R. Hiptmair, "Galerkin boundary element methods for electromagnetic scattering," Topics in Computational Wave Propagation. Direct and Inverse Problems, Vol. 31, 83-124, 2003. Google Scholar
11. de La Bourdonnaye, A., "Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism," Numer. Math., Vol. 69, No. 3, 257-268, 1995.
doi:10.1007/s002110050091 Google Scholar
12. Knockaert, L., D. De Zutter, G. Lippens, and H. Rogier, "On the Schur complement form of the Dirichlet-to-Neumann operator," Wave Motion, Vol. 45, No. 3, 309-324, 2008.
doi:10.1016/j.wavemoti.2007.07.004 Google Scholar
13. Crabtree, D. E. and E. V. Haynsworth, "An identity for the Schur complement of a matrix," Proc. Amer. Math. Soc., Vol. 22, 364-366, 1969.
doi:10.2307/2037057 Google Scholar
14. Corach, G., A. Maestripieri, and D. Stojanoff, "Generalized Schur complements and oblique projections," Lin. Alg. Appl., Vol. 341, 259-272, 2002.
doi:10.1016/S0024-3795(01)00384-6 Google Scholar
15. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, 1964.
16. Van Bladel, J. G., Electromagnetic Fields, 2nd Ed., IEEE Press, 2007.
17. Garcia, S. R. and M. Putinar, "Complex symmetric operators and applications," Trans. Amer. Math. Soc., Vol. 358, No. 3, 1285-1315, 2005.
doi:10.1090/S0002-9947-05-03742-6 Google Scholar
18. Meyer, K. R. and G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Applied Mathematical Sciences, Vol. 90, Springer, 1992.
19. Lin, W. W. and C. S. Wang, "On computing stable Lagrangian subspaces of Hamiltonian matrices and symplectic pencils," SIAM J. Matrix Anal. Appl., Vol. 18, 590-614, 1997.
doi:10.1137/S0895479894272712 Google Scholar
20. Laub, A., "A Schur method for solving algebraic Riccati equations," IEEE Trans. Automat. Control, Vol. 24, 913-921, 1979.
doi:10.1109/TAC.1979.1102178 Google Scholar
21. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics. An Introduction, Springer, 2002.
22. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, No. 6, 676-696, 1981.
doi:10.1109/PROC.1981.12048 Google Scholar
23. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, Wiley, 1984.
24. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, 1986.