1. Mortley, W. S., "Pulse compression by dispersive gratings on crystal quartz," Marconi Rev., No. 59, 273-290, 1965. Google Scholar
2. Alley, G., "Interdigital capacitors and their application to lumpedelement microwave integrated circuits," IEEE Trans. Microwave Theory Tech., Vol. 18, 1028-1076, 1970.
doi:10.1109/TMTT.1970.1127407 Google Scholar
3. Hobdell, J., "Optimization of interdigital capacitors," IEEE Transactions on MTT, 788-791, 1979.
doi:10.1109/TMTT.1979.1129730 Google Scholar
4. Esfandiari, R., D. Maki, and M. Siracusa, "Design of interdigital capacitors and their application to GaAs monolithic filters," IEEE Transactions on MTT, 57-64, 1983.
doi:10.1109/TMTT.1983.1131429 Google Scholar
5. She, X. and Y. Chow, "Interdigital microstrip capacitor as a four-port network," IEE Proceedings, Microwaves, Antennas and Propagation, Vol. 133, 191-197, 1986. Google Scholar
6. Gevorgian, S., T. Martinsson, P. Linner, and E. Kolberg, "CAD models for multilayered substrate interdigital capacitors," IEEE Transactions on MTT, 896-904, 1996.
doi:10.1109/22.506449 Google Scholar
7. Zhu, L. and K. Wu, "Accurate circuit model of interdigital capacitor and its application to design of new quasi-lumped miniaturized filters with suppression of harmonic resonance," IEEE Transactions on MTT, 347-356, 2000. Google Scholar
8. Gharsallah, A., A. Gharbi, L. Desclos, and H. Baudrand, "Analysis of interdigital capacitors and quasilumped miniaturized filters using iterative method," Int. Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 15, 169-179, 2002.
doi:10.1002/jnm.448 Google Scholar
9. Niu, J.-X. and X.-L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802 Google Scholar
10. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on ferrite substrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
doi:10.2528/PIERL07111808 Google Scholar
11. Abbaspour-Sani, E., N. Nasirzadeh, and G. Dadashzadeh, "Two novel structures for tunable MEMS capacitor with RF applications," Progress In Electromagnetics Research, Vol. 68, 169-183, 2007.
doi:10.2528/PIER06081404 Google Scholar
12. Li, L. and D. Uttamchandani, "A concept of moving dielectrophoresis electrodes based on microelectromechanical systems (MEMS) actuators," Progress In Electromagnetics Research Letters, Vol. 2, 89-94, 2008.
doi:10.2528/PIERL07122811 Google Scholar
13. Mamishev, A. V., K. Sundara-Rajan, F. Yang, Y. Du, and M. Zahn, "Interdigital sensors and transducers," IEEE Proceedings, Vol. 92, No. 5, 808-845, 2004.
doi:10.1109/JPROC.2004.826603 Google Scholar
14. Abu-Abed, A., R. G. Lindquist, and W.-H. Choi, "Capacitive transduction for liquid crystal based sensors, Part I: Ordered systems," IEEE Sensors Journal, Vol. 7, No. 12, 1617-1624, Dec. 2007.
doi:10.1109/JSEN.2007.908504 Google Scholar
15. Shah, R. and N. L. Abbott, "Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals," Science, Vol. 293, No. 5533, 1296-1299, 2001.
doi:10.1126/science.1062293 Google Scholar
16. Brake, J., M. Daschner, and N. L. Abbott, "Biomolecular interactions at phospholipid decorated surfaces of thermotropic liquid crystals," Science, Vol. 302, No. 5653, 2094-2097, 2003.
doi:10.1126/science.1091749 Google Scholar
17. Shah, R. R. and N. L. Abbott, "Coupling of the orientations of liquid crystals and electrical double layers formed by the dissociation of surface-immobilized salts," Journal of Physical Chemistry B, Vol. 105, No. 21, 4936-4950, 2001.
doi:10.1021/jp004073g Google Scholar
18. Van Nelson, J. A., S. R. Kim, and N. L. Abbott, "Amplification of specific binding events between biological species using lyotropic liquid crystals," Langmuir, Vol. 18, No. 13, 5031-5035, 2002.
doi:10.1021/la0118715 Google Scholar
19. Ding, W., L. Chen, and C.-H. Liang, "Characteristics of electromagnetic wave propagation in biaxially anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-42, 2007.
doi:10.2528/PIER07011001 Google Scholar
20. Zheng, L. G. and W. X. Zhang, "Analysis of bi-anisotropic PBG structure using plane wave expansion method," Progress In Electromagnetics Research, Vol. 42, 233-246, 2003.
doi:10.2528/PIER03012101 Google Scholar
21. Wang, M. Y., J. Xu, J. Wu, B. Wei, H. L. Li, T. Xu, and D. B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602 Google Scholar
22. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701 Google Scholar
23. Franceschini, G., A. Abubakar, T. M. Habashy, and A. Massa, "A comparative assessment among iterative linear solvers dealing with electromagnetic integral equations in 3D inhomogeneous anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 899-914, 2007.
doi:10.1163/156939307780749048 Google Scholar
24. Jarem, J. M., "Rigorous coupled wave theory of anisotropic, azimuthally-inhomogeneous cylindrical systems," Progress In Electromagnetics Research, Vol. 19, 109-127, 1998.
doi:10.2528/PIER97103100 Google Scholar
25. Collings, P. J., Liquid Crystals, Nature's Delicate Phase of Matter, 2nd edition, Princeton University Press, 2002.