PIER B | |

Progress In Electromagnetics Research B | ISSN: 1937-6472 |

Home > Vol. 11 > pp. 103-131
## DIFFRACTION OF PLANE WAVES BY A SLIT IN AN INFINITE SOFT-HARD PLANEBy M. Ayub, A. B. Mann, M. Ramzan, and M. H. Tiwana
Abstract:
We have studied the problem of diffraction of plane waves by a finite slit in an infinitely long soft-hard plane. Analysis is based on the Fourier transform, the Wiener-Hopf technique and the method of steepest descent. The boundary value problem is reduced to a matrix Wiener-Hopf equation which is solved by using the factorization of the kernel matrix. The diffracted field, calculated in the far-field approximation, is shown to be the sum of the fields (separated and interaction fields) produced by the two edges of the slit. Some graphs showing the effects of slit width on the diffracted field produced by two edges of the slit are also plotted.
2. Buyukaksoy, A., "A note on the plane wave diffraction by a soft/hard half-plane," 3. Hamid, M. A. K., A. Mohsen, and W. M. Boerner, "Diffraction by a slit in a thick conducting screen," 4. Keller, J. B., "Diffraction by an aperture," 5. Karp, S. N. and A. Russek, "Diffraction by a wide slit," 6. Levine, H., "Diffraction by an infinite slit," 7. Birbir, F. and A. Buyukaksoy, "Plane wave diffraction by a wide slit in a thick impedance screen," 8. Morse, P. M. and P. J. Rubenstein, "The diffraction of waves by ribbons and slits," 9. Asghar, S., T. Hayat, and J. G. Haris, "Diffraction by a slit in an infinite porous barrier," 10. Hayat, T., S. Asghar, and K. Hutter, "Scattering from a slit in a biisotropic medium," 11. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a two dimensional perfect electromagnetic conductor (PEMC) strip and PEMC strip grating simulated by circular cylinders," 12. Ayub, M., M. Ramzan, and A. B. Mann, "A note on spherical electromagnetic wave diffraction by a perfectly conducting strip in a homogeneous bi-isotropic medium," 13. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," 14. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of plane waves by two parallel slits in an infinitely long impedance plane using the method of Kobayashi potentials," 15. Naveed, M. and Q. A. Naqvi, "Diffraction of EM plane wave by a slit in an impedance plane using Maliuzhinetz function," 16. Ayub, M., A. B. Mann, and M. Ahmad, "Line source and point source scattering of acoustic waves by the junction of transmissive and soft-hard half planes," 17. Senior, T. B. A. and E. Topaskal, "Diffraction by an anisotropic impedance half plane-reviewed solution," 18. Liang, C. H., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," 19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," 20. Ghaffar, A., A. Hussain, and Q. A. Naqvi, "Radiation characteristics of an inhomogeneous slab," 21. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Focal region fields of three dimensional Gregorian system," 22. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano-convex lense," 23. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half space," 24. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from paralell perfect electromagnetic conductor cylinders of circular cross-section using iterative procedure," 25. Hurd, R. A., "A note on the solvability of simultaneous Wiener-Hopf equations," 26. Rawlins, A. D., "The solution of mixed boundary value problem in the theory of diffraction," 27. Rawlins, A. D. and W. E. Williams, "Matrix Wiener-Hopf factorization," 28. Daniele, V. G., "On the factorization of Wiener-Hopf matrices in problems solvable with Hurd's method," 29. Kharapkov, A. A., "Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vortex, subjected to concentrated forces," 30. Buyukaksoy, A. and A. H. Serbest, "Matrix Wiener-Hopf factorization methods and applications to some diffraction problems," 31. Noble, B., 32. Jones, D. S., "Diffraction by a waveguide of finite length," |

© Copyright 2010 EMW Publishing. All Rights Reserved