PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 103-131

DIFFRACTION OF PLANE WAVES BY A SLIT IN AN INFINITE SOFT-HARD PLANE

By M. Ayub, A. B. Mann, M. Ramzan, and M. H. Tiwana

Full Article PDF (489 KB)

Abstract:
We have studied the problem of diffraction of plane waves by a finite slit in an infinitely long soft-hard plane. Analysis is based on the Fourier transform, the Wiener-Hopf technique and the method of steepest descent. The boundary value problem is reduced to a matrix Wiener-Hopf equation which is solved by using the factorization of the kernel matrix. The diffracted field, calculated in the far-field approximation, is shown to be the sum of the fields (separated and interaction fields) produced by the two edges of the slit. Some graphs showing the effects of slit width on the diffracted field produced by two edges of the slit are also plotted.

Citation:
M. Ayub, A. B. Mann, M. Ramzan, and M. H. Tiwana, "Diffraction of Plane Waves by a Slit in an Infinite Soft-Hard Plane," Progress In Electromagnetics Research B, Vol. 11, 103-131, 2009.
doi:10.2528/PIERB08101803

References:
1. Rawlins, A. D., "The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane," Proc. Roy. Soc. London, Ser. A, Vol. 346, 469-484, 1975.
doi:10.1098/rspa.1975.0186

2. Buyukaksoy, A., "A note on the plane wave diffraction by a soft/hard half-plane," ZAMM, Vol. 75, No. 2, 162-164, 1995.

3. Hamid, M. A. K., A. Mohsen, and W. M. Boerner, "Diffraction by a slit in a thick conducting screen," J. Appl. Physics Communications, 3882-3883, 1969.
doi:10.1063/1.1658302

4. Keller, J. B., "Diffraction by an aperture," J. Appl. Physics, Vol. 28, No. 4, 426-444, 1957.
doi:10.1063/1.1722767

5. Karp, S. N. and A. Russek, "Diffraction by a wide slit," J. Appl. Physics, Vol. 27, No. 8, 886-894, 1956.
doi:10.1063/1.1722509

6. Levine, H., "Diffraction by an infinite slit," J. Appl. Physics, Vol. 30, No. 11, 1673-1682, 1959.
doi:10.1063/1.1735035

7. Birbir, F. and A. Buyukaksoy, "Plane wave diffraction by a wide slit in a thick impedance screen," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 6, 803-826, 1996.
doi:10.1163/156939396X00793

8. Morse, P. M. and P. J. Rubenstein, "The diffraction of waves by ribbons and slits," Phys. Rev., Vol. 54, 895-898, 1938.
doi:10.1103/PhysRev.54.895

9. Asghar, S., T. Hayat, and J. G. Haris, "Diffraction by a slit in an infinite porous barrier," Wave Motion, Vol. 33, 25-40, 2001.
doi:10.1016/S0165-2125(00)00061-5

10. Hayat, T., S. Asghar, and K. Hutter, "Scattering from a slit in a biisotropic medium," Can. J. Phys., Vol. 81, 1193-1204, 2003.
doi:10.1139/p03-093

11. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a two dimensional perfect electromagnetic conductor (PEMC) strip and PEMC strip grating simulated by circular cylinders," Opt. Commun., Vol. 281, 4211-4218, 2008.
doi:10.1016/j.optcom.2008.05.022

12. Ayub, M., M. Ramzan, and A. B. Mann, "A note on spherical electromagnetic wave diffraction by a perfectly conducting strip in a homogeneous bi-isotropic medium," Progress In Electromagnetics Research, Vol. 85, 169-194, 2008.

13. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

14. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of plane waves by two parallel slits in an infinitely long impedance plane using the method of Kobayashi potentials," Progress In Electromagnetics Research, Vol. 63, 107-123, 2006.
doi:10.2528/PIER06042601

15. Naveed, M. and Q. A. Naqvi, "Diffraction of EM plane wave by a slit in an impedance plane using Maliuzhinetz function," Progress In Electromagnetics Research B, Vol. 5, 265-273, 2008.
doi:10.2528/PIERB08021402

16. Ayub, M., A. B. Mann, and M. Ahmad, "Line source and point source scattering of acoustic waves by the junction of transmissive and soft-hard half planes," J. Math. Anal. Appl., Vol. 346, No. 1, 280-295, 2008.
doi:10.1016/j.jmaa.2008.04.069

17. Senior, T. B. A. and E. Topaskal, "Diffraction by an anisotropic impedance half plane-reviewed solution," Progress In Electromagnetics Research, Vol. 53, 1-19, 2005.
doi:10.2528/PIER04061702

18. Liang, C. H., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902

19. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 75, 215-240, 2007.
doi:10.2528/PIER07031602

20. Ghaffar, A., A. Hussain, and Q. A. Naqvi, "Radiation characteristics of an inhomogeneous slab," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2, 301-312, 2008.
doi:10.1163/156939308784160695

21. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Focal region fields of three dimensional Gregorian system," Optics Communications, Vol. 281, 1343-1353, 2008.
doi:10.1016/j.optcom.2007.11.011

22. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano-convex lense," Progress In Electromagnetics Research, Vol. 83, 25-24, 2007.

23. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half space," Progress In Electromagnetics Research, Vol. 78, 2538-2548, 2008.

24. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from paralell perfect electromagnetic conductor cylinders of circular cross-section using iterative procedure," Journal of Electromagnetic Waves and Applications, Vol. 22, 987-1003, 2008.
doi:10.1163/156939308784150209

25. Hurd, R. A., "A note on the solvability of simultaneous Wiener-Hopf equations," Can. J. Phys., Vol. 57, 402-403, 1979.

26. Rawlins, A. D., "The solution of mixed boundary value problem in the theory of diffraction," J. Engng. Mathematics, Vol. 18, 37-62, 1984.

27. Rawlins, A. D. and W. E. Williams, "Matrix Wiener-Hopf factorization," Quart. J. Mech. Appl. Math., Vol. 34, 1-8, 1981.
doi:10.1093/qjmam/34.1.1

28. Daniele, V. G., "On the factorization of Wiener-Hopf matrices in problems solvable with Hurd's method," IEEE Trans. on Antennas Propagat., Vol. 26, 614-616, 1978.
doi:10.1109/TAP.1978.1141895

29. Kharapkov, A. A., "Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vortex, subjected to concentrated forces," Prikl. Math. Mekh., Vol. 35, 1879-1885, 1971.

30. Buyukaksoy, A. and A. H. Serbest, "Matrix Wiener-Hopf factorization methods and applications to some diffraction problems," Analytical and Numerical Techniques in Electromagnetic Wave Theory, Chap. 6., Hashimoto, Idemen, Tretyakov (eds.), Science House, Tokyo, Japan.

31. Noble, B., Methods Based on the Wiener-Hopf Technique, Pergamon, London, 1958.

32. Jones, D. S., "Diffraction by a waveguide of finite length," Proc. Camb. Phil. Soc., Vol. 48, 118-134, 1952.
doi:10.1017/S0305004100027432


© Copyright 2010 EMW Publishing. All Rights Reserved