PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 281-297

DISCUSSION ABOUT THE ANALYTICAL CALCULATION OF THE MAGNETIC FIELD CREATED BY PERMANENT MAGNETS

By R. Ravaud, G. Lemarquand, V. Lemarquand, and C. Depollier

Full Article PDF (633 KB)

Abstract:
This paper presents an improvement of the calculation of the magnetic field components created by ring permanent magnets. The three-dimensional approach taken is based on the Coulombian Model. Moreover, the magnetic field components are calculated without using the vector potential or the scalar potential. It is noted that all the expressions given in this paper take into account the magnetic pole volume density for ring permanent magnets radially magnetized. We show that this volume density must be taken into account for calculating precisely the magnetic field components in the near-field or the far-field. Then, this paper presents the component switch theorem that can be used between infinite parallelepiped magnets whose cross-section is a square. This theorem implies that the magnetic field components created by an infinite parallelepiped magnet can be deducted from the ones created by the same parallelepiped magnet with a perpendicular magnetization. Then, we discuss the validity of this theorem for axisymmetric problems (ring permanent magnets). Indeed, axisymmetric problems dealing with ring permanent magnets are often treated with a 2D approach. The results presented in this paper clearly show that the two-dimensional studies dealing with the optimization of ring permanent magnet dimensions cannot be treated with the same precisions as 3D studies.

Citation:
R. Ravaud, G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion About the Analytical Calculation of the Magnetic Field Created by Permanent Magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102

References:
1. Babic, S. and C. Akyel, "Improvement of the analytical calculation of the magnetic field produced by permanent magnet rings," Progress In Electromagnetic Research, Vol. 5, 71-82, 2008.

2. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096

3. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019

4. Charpentier, J. F. and G. Lemarquand, "Calculation of ironless permanent magnet coupling using semi-numerical magnetic pole theory method," COMPEL, Vol. 20, No. 1, 72-89, 2001.

5. Abele, M., J. Jensen, and H. Rusinek, "Generation of uniform high fields with magnetized wedges," IEEE Trans. Magn., Vol. 33, No. 5, 3874-3876, 1997.
doi:10.1109/20.619600

6. Halbach, K., "Design of permanent multiple magnets with oriented rec material," Nucl. Inst. Meth., Vol. 169, 1-10, 1980.
doi:10.1016/0029-554X(80)90094-4

7. Furlani, E., S. Reznik, and A. Kroll, "A three-dimensional field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, 1995.
doi:10.1109/20.364587

8. Marinescu, M. and N. Marinescu, "Compensation of anisotropy effects in flux-confining permanent-magnet structures," IEEE Trans. Magn., Vol. 25, No. 5, 3899-3901, 1989.
doi:10.1109/20.42470

9. Zhilichev, Y., "Calculation of magnetic field of tubular permanent magnet assemblies in cylindrical bipolar coordinates," IEEE Trans. Magn., Vol. 43, No. 7, 3189-3195, 2007.
doi:10.1109/TMAG.2007.894636

10. Blache, C. and G. Lemarquand, "Linear displacement sensor with hight magnetic field gradient," Journal of Magnetism and Magnetic Materials, Vol. 104, 1106-1108, 1992.
doi:10.1016/0304-8853(92)90508-L

11. Blache, C. and G. Lemarquand, "New structures for linear displacement sensor with hight magnetic field gradient," IEEE Trans. Magn., Vol. 28, No. 5, 2196-2198, 1992.
doi:10.1109/20.179441

12. Lemarquand, G. and V. Lemarquand, "Annular magnet position sensor," IEEE. Trans. Magn., Vol. 26, No. 5, 2041-2043, 1990.
doi:10.1109/20.104612

13. Wang, J., G. W. Jewell, and D. Howe, "Design optimization and comparison of permanent magnet machines topologies," IEE. Proc. Elect. Power Appl., Vol. 148, 456-464, 2001.
doi:10.1049/ip-epa:20010512

14. Zhu, Z., G. W. Jewell, and D. Howe, "Design considerations for permanent magnet polarised electromagnetically actuated brakes," IEEE Trans. Magn., Vol. 31, No. 6, 3743-3745, 1995.
doi:10.1109/20.489757

15. Furlani, E., "Field analysis and optimization of NdFeB axial field permanent magnet motors," IEEE Trans. Magn., Vol. 33, No. 5, 3883-3885, 1997.
doi:10.1109/20.619603

16. Selvaggi, J. P., S. Salon, O. M. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors --- An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, 2004.
doi:10.1109/TMAG.2004.831653

17. Berkouk, M., V. Lemarquand, and G. Lemarquand, "Analytical calculation of ironless loudspeaker motors," IEEE Trans. Magn., Vol. 37, No. 2, 1011-1014, 2001.
doi:10.1109/20.917185

18. Lemarquand, G., "Ironless loudspeakers," IEEE Trans. Magn., Vol. 43, No. 8, 3371-3374, 2007.
doi:10.1109/TMAG.2007.897739

19. Remy, M., G. Lemarquand, B. Castagnede, and G. Guyader, "Ironless and leakage free voice-coil motor made of bonded magnets," IEEE Trans. Magn., Vol. 44, No. 11, 2008.
doi:10.1109/TMAG.2008.2003401

20. Durand, E., "Electrostatique," Masson Editeur, Paris, France, Vol. 1, 248-251, 1964.

21. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316

22. Akoun, G. and J. P. Yonnet, "3d analytical calculation of the forces exerted between two cuboidal magnets," IEEE Trans. Magn., Vol. 20, No. 5, 1962-1964, 1984.
doi:10.1109/TMAG.1984.1063554

23. Bancel, F. and G. Lemarquand, "Three-dimensional analytical optimization of permanent magnets alternated structure," IEEE Trans. Magn., Vol. 34, No. 1, 242-247, 1998.
doi:10.1109/20.650248

24. Babic, S. and M. M. Gavrilovic, "New expression for calculating magnetic fields due to current-carrying solid conductors," IEEE Trans. Magn., Vol. 33, No. 5, 4134-4136, 1997.
doi:10.1109/20.619687

25. Babic, S., C. Akyel, S. Salon, and S. Kincic, "New expressions for calculating the magnetic field created by radial current in massive disks," IEEE Trans. Magn., Vol. 38, No. 2, 497-500, 2002.
doi:10.1109/20.996131

26. Azzerboni, B. and G. Saraceno, "Three-dimensional calculation of the magnetic field created by current-carrying massive disks," IEEE Trans. Magn., Vol. 34, No. 5, 2601-2604, 1998.
doi:10.1109/20.717601

27. Azzerboni, B. and E. Cardelli, "Magnetic field evaluation for disk conductors," IEEE Trans. Magn., Vol. 29, No. 6, 2419-2421, 1993.
doi:10.1109/20.280997

28. Babic, S., C. Akyel, and M. M. Gavrilovic, "Calculation improvement of 3D linear magnetostatic field based on fictitious magnetic surface charge," IEEE Trans. Magn., Vol. 36, No. 5, 3125-3127, 2000.
doi:10.1109/20.908707

29. Babic, S., C. Akyel, and S. Salon, "New procedures for calculating the mutual inductance of the system: Filamentary circular coilmassive circular solenoid," IEEE Trans. Magn., Vol. 39, No. 3, 1131-1134, 2003.
doi:10.1109/TMAG.2003.810550

30. Babic, S., S. Salon, and C. Akyel, "The mutual inductance of two thin coaxial disk coils in air," IEEE Trans. Magn., Vol. 40, No. 2, 822-825, 2004.
doi:10.1109/TMAG.2004.824810

31. Babic, S. and C. Akyel, "Magnetic force calculation between thin coaxial circular coils in air," IEEE Trans. Magn., Vol. 44, No. 4, 445-452, 2008.
doi:10.1109/TMAG.2007.915292

32. Selvaggi, J., S. Salon, O. M. Kwon, and M. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, 2007.
doi:10.1109/TMAG.2007.902995

33. Kwon, O. M., C. Surussavadee, M. Chari, S. Salon, and K. Vasubramaniam, "Analysis of the far field of permanent magnet motors and effects of geometric asymmetries and unbalance in magnet design," IEEE Trans. Magn., Vol. 40, No. 3, 435-442, 2004.
doi:10.1109/TMAG.2004.824117

34. http://www.univ-lemans.fr/∼glemar, .


© Copyright 2010 EMW Publishing. All Rights Reserved