PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 21 > pp. 151-170

EFFICIENT ELECTRICALLY SMALL OBLATE SPHEROIDAL AND SPHERICAL ANTENNAS IN SHELLS WITH NEGATIVE PERMITTIVITY

By O. B. Vorobyev

Full Article PDF (484 KB)

Abstract:
Electrically small oblate spheroidal and spherical antennas in confocal shells with negative permittivity represent perspective antenna design to combine moderately small size, wide bandwidth, high e┬▒ciency and power of radiation. However, optimization of the antennas performance parameters imposes contradictory restrictions on permittivity of the shells, electrical size of the antennas, shape of the antennas and shells. Simulation results based on method of eigen-functions have shown that the antennas can be tuned on resonance for small magnitudes of negative permittivity of the shells and antiresonance for higher magnitudes. Optimal combination of power and efficiency of radiation of the antenna and the quality factor is obtained in an intermediate range of negative permittivity by combining merits of resonance and antiresonance of the antenna. Antiresonant range of the oblate spheroidal antenna emerges for lower permittivity magnitudes as compared with the spherical antenna. As a result, the optimal size of the shell of oblate spheroidal antenna is comparatively small. However, more gradual emerging of antiresonant properties of the spherical antenna makes spherical design more suitable for higher level of inherent absorption of the shell medium with negative permittivity.

Citation:
O. B. Vorobyev, "Efficient Electrically Small Oblate Spheroidal and Spherical Antennas in Shells with Negative Permittivity," Progress In Electromagnetics Research B, Vol. 21, 151-170, 2010.

References:
1. Ziolkowski, R. W. and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans Antennas Propag. , Vol. 54, No. 7, 2113-2130, Jul. 2006.
doi:10.1109/TAP.2006.877179

2. Stuart, H. R. and A. Pidwerbetsky, "Electrically small antenna elements using negative permittivity resonators," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1644-1653, Jun. 2006.
doi:10.1109/TAP.2006.875498

3. Erentok, A. and R. W. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag., Vol. 55, 731-741, Mar. 2007.
doi:10.1109/TAP.2007.891553

4. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 56, 691-7407, Mar. 2008.
doi:10.1109/TAP.2008.916949

5. Pistolkors, A. A. and V. I. Zimina, "Radiation of a vibrator antenna, enclosed in electron plasma," Questions of Radio Electronics, Vol. 12, No. 1, 3-12, 1963 (in Russian).

6. Chen, K. M. and C. C. Lin, "Enhanced radiation from a plasmaembedded antenna," Proc. IEEE, Vol. 56, 1595-1597, 1968.
doi:10.1109/PROC.1968.6659

7. Roslyakov, N. M. and N. A. Tenyakova, "Radiation of plasma-coated prolate spheroidal antenna," Journal of Communications Technology and Electronics, Vol. 37, No. 10, 5-14, 1992.

8. Roslyakov, N. M., N. A. Tenyakova, and O. B. Vorob'ev (Vorobyev), "Radiation of a circular loop antenna enclosed by a magnetodielectric sphere," Journal of Communications Technology and Electronics, Vol. 49, No. 10, 1133-1140, 2004.

9. Huang, M. D. and S. Y. Tan, "Efficient electrically small prolate spheroidal antennas coated with a shell of double-negative metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604

10. Bichutskaya, T. I. and G. I. Makarov, "Radiation of an electric dipole from a small plasma spheroid," Radiophysics and Quantum Electronics, Vol. 46, No. 12, 940-947, 2003.
doi:10.1023/B:RAQE.0000029589.54371.24

11. Bichutskaya, T. I. and G. I. Makarov, "Radiation from a small spheroidal antenna with plasma shell," Radiophysics and Quantum Electronics, Vol. 49, No. 3, 940-947, 2006.
doi:10.1007/s11141-006-0055-8

12. Foltz, H. D., J. S. McLean, and G. Crook, "Disk loaded monopoles with parallel strip elements," IEEE Trans. Antennas Propag., Vol. 46, 1894-1896, 1998.
doi:10.1109/8.743844

13. Stratton, J. A., P. M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbato, "Spheroidal Wave Functions," John Wiley & Sons, New York,1956.

14. Flammer, C., Spheroidal Wave Functions, Stanford Univ. Press, California, 1957.

15. Komarov, I. V., L. I. Ponomarev, and S. Y. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, Nauka, Moscow, 1976 (in Russian).

16. Li, L.-W., M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K. Y. Tan, "Computations of spheroidal harmonics with complex argument: A review with an algorithm ," Phys. Rev. E, Vol. 58, No. 5, 6792-6806, Nov. 1998.
doi:10.1103/PhysRevE.58.6792

17. Falloon, P. E., P. C. Abbott, and J. B. Wang, "Theory and computation of spheroidal wave functions," Journal of Physics A, Vol. 36, 5477-5495, 2003.
doi:10.1088/0305-4470/36/20/309

18. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth and Q of antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1298-1324, Apr. 2005.
doi:10.1109/TAP.2005.844443

19. Collin, R. E. and S. Rothschild, "Evaluation of antenna Q," IEEE Trans. Antennas Propag., Vol. 17, No. 1, 23-27, Jan. 1964.
doi:10.1109/TAP.1964.1138151

20. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas ," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, May 1996.
doi:10.1109/8.496253

21. Best, S. R., A Comparison of the cylindrical folded helix Q to the Gustafsson limit, Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference in Berlin, 2554-2557, March 23-27, 2009.

22. Sten, J. C.-E., "Radiation Q of a small antenna enclosed in an oblate spheroidal volume: Transverse-to-axis polarisation," AEU. Int. Jl. Electron. Commun., Vol. 57, No. 3, 201-205, 2003.

23. Best, S. R., "The radiation properties of electrically small folded spherical helix antennas," IEEE Trans. Antennas Propag., Vol. 52, 953-960, 2004.

24. Best, S. R., "Low Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, 1047-1053, 2005.

25. Hirvonen, M. and S. A. Tretyakov, "Near-zero permittivity substrates for horizontal antennas: performance enhancement and limitations," Microw. and Opt. Tech. Lett., Vol. 50, 2674-2677, Oct. 2008.

26. Stuart, H. R., A. D. Yaghjian, and S. R. Best, "Limitations in relating quality factor to bandwidth in a double resonance small antenna ," IEEE Antennas Wireless Propag. Lett., Vol. 6, No. 4, 460-463, 2007.

27. Wang, J., S. Qu, J. Zhang, H. Ma, Y. Yang, C. Gu, and X.Wu, "A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators ," Progress In Electromagnetics Research Letters, Vol. 6, 35-45, 2009.

28. Hu, X., Q. Zhang, and S. Xe, "Compact dual-band rejection filter based on complementary meander line split ring resonator," Progress In Electromagnetics Research Letters, Vol. 8, 181-190, 2009.


© Copyright 2010 EMW Publishing. All Rights Reserved