PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 23 > pp. 199-214

STRONG MAGNETIC FIELD INDUCED SEGREGATION AND SELF-ASSEMBLY OF MICROMETER SIZED NON-MAGNETIC PARTICLES

By Z. Sun, M. Guo, J. Vleugels, O. Van der Biest, and B. Blanpain

Full Article PDF (668 KB)

Abstract:
Micrometer and sub-micrometer sized non-magnetic particles were manipulated by an external strong magnetic field (e.g. 10 Tesla) with a high gradient. During the strong magnetic field effects, segregation of the non-magnetic particles was observed which could not be realised only with gravitational field. Numerical calculations were subsequently carried out to understand the effects on the insulating particles in a conductive liquid matrix. The migration of micrometer sized particles is obviously enhanced by the magnetic field gradient. Combining the experimental results and theoretical analysis, particle-particle magnetic interaction was found to influence the overall segregation of the particles as well. Magnetised by the strong magnetic field, magnetic interaction between non-magnetic particles becomes dominant and a self-assembly behavior can be demonstrated. Various factors such as the magnetic dipole-dipole interaction and chain-chain interaction, are governing the particles assembly. According to calculations, magnetic field should be strong enough, at least 7 T in order to obtain the assembly morphologies in the present case.

Citation:
Z. Sun, M. Guo, J. Vleugels, O. Van der Biest, and B. Blanpain, "Strong Magnetic Field Induced Segregation and Self-Assembly of Micrometer Sized Non-Magnetic Particles," Progress In Electromagnetics Research B, Vol. 23, 199-214, 2010.
doi:10.2528/PIERB10062104

References:
1. Asai, S., K. Sassa, and M. Tahashi, "Crystal orientation of non-magnetic materials by imposition of a high magnetic field," Science and Technology of Advanced Materials, Vol. 4, 455-460, 2003.
doi:10.1016/j.stam.2003.07.001

2. Motokawa, M., "Physics in high magnetic fields," Rep. Prog. Phys., Vol. 67, 1995-2052, 2004.
doi:10.1088/0034-4885/67/11/R02

3. Hangarter, C. M., Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, "Hierarchical magnetic assembly of nanowires," Nanotechnology, Vol. 18, 205305, 2007.
doi:10.1088/0957-4484/18/20/205305

4. Ren, Z., X. Li, Y. Sun, Y. Gao, K. Deng, and Y. Zhong, "Influence of high magnetic field on peritectic transformation during solidification of Bi-Mn alloy," Calphad, Vol. 30, 277-285, 2006.
doi:10.1016/j.calphad.2006.03.004

5. Reitz, J. R. and F. J. Milford, Foundations of Electromagnetic Theory, Addison-Wesley Publishing Company, London, England, 1962.

6. Larachi, F. and M. C. Munteanu, "Magnetic emulation of microgravity for earth-bound multiphase catalytic reactor studies potentialities and limitations," AIChE J., Vol. 55, 1200-1216, 2009.
doi:10.1002/aic.11752

7. Sun, Z., L. Zhang, M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Non-magnetic anisotropic-materials preparation by a strong magnetic field during the solidification of a hypereutectic Al-Cu alloy," EPL, Vol. 89, 64002, 2010.
doi:10.1209/0295-5075/89/64002

8. Takayama, T., Y. Ikezoe, H. Uetake, N. Hirota, and K. Kitazawa, "Self-organization of nonmagnetic spheres by magnetic field," Appl. Phys. Lett., Vol. 86, 234103-234103, 2005.
doi:10.1063/1.1947371

9. Berry, M. V. and A. K. Geim, "Of flying frogs and levitrons," Eur. J. Phys., Vol. 18, 307-313, 1997.
doi:10.1088/0143-0807/18/4/012

10. Crangle, J., The Magnetic Properties of Solids, Edwad Arnold Limited, London, 1977.

11. Bishop, K. J. M., C. E. Wilmer, S. Soh, and B. A. Grzybowski, "Nanoscale forces and their uses in self-assembly," Small, Vol. 5, 1600-1630, 2009.
doi:10.1002/smll.200900358

12. Hill, R. J. A., V. L. Sedman, S. Allen, P. Williams, M. Paoli, L. Adler-Abramovich, E. Gazit, L. Eaves, and S. J. B. Tendler, "Alignment of aromatic peptide tubes in strong magnetic fields," Advanced Materials, Vol. 19, 4474-4479, 2007.
doi:10.1002/adma.200700590

13. Boamfa, M. I., S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, "Magnetic field alignment of liquid crystals for fast display applications," Advanced Materials, Vol. 17, 610-614, 2005.
doi:10.1002/adma.200400954

14. Garmestani, H., M. S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin, and M. Y. Hussaini, "Polymer-mediated alignment of carbon nanotubes under high magnetic fields," Advanced Materials, Vol. 15, 1918-1921, 2003.
doi:10.1002/adma.200304932

15. Yamaguchi, M. and Y. Tanimoto, Magneto-science (Magnetic Field Effects on Materials: Fundamentals and Applications), Springer-Verlag, Berlin, Heidelberg, New York, 2006.

16. Sun, Z., M. Guo, F. Verhaeghe, J. Vleugels, O. van der Biest, and B. Blanpain, "Magnetic interaction between two non-magnetic particles migrating in a conductive fluid induced by a strong magnetic field-an analytical approach," Progress In Electromagnetics Research, Vol. 103, 1-16, 2010.
doi:10.2528/PIER10022607

17. Sun, Z., T. Kokalj, M. Guo, F. Verhaeghe, O. van der Biest, B. Blanpain, and K. van Reusel, "Effect of the strong magnetic field on the magnetic interaction between two non-magnetic particles migrating in a conductive fluid," EPL, Vol. 85, 14002, 2009.
doi:10.1209/0295-5075/85/14002

18. Chester, W., "The effect of a magnetic field on stokes flow in a conducting fluid," Journal of Fluid Mechanics, Vol. 3, 304-308, 1957.
doi:10.1017/S0022112057000671

19. Sun, Z., M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Numerical simulations of the `strong magnetic field effects' on micrometer sized insulating (inert) particle(s) moving in a conductive fluid," Physical Review E, submitted, 2010.

20. Maki, S., M. Ataka, T. Tagawa, and H. Ozoe, "Natural convection of a paramagnetic liquid controlled by magnetization force," AIChE J., Vol. 51, 1096-1103, 2005.
doi:10.1002/aic.10460

21. Sun, Z., M. Guo, J. Vleugels, O. van der Biest, and B. Blanpain, "Numerical calculations on inclusion removal from liquid metals under strong magnetic fields," Progress In Electromagnetics Research, Vol. 98, 359-373, 2009.
doi:10.2528/PIER09100501

22. Weast, R. C., M. J. Astle, and W. H. Beyer, CRC handbook of Chemistry and Physics, CRC Press, Inc., Florida, USA, 1983--1984.

23. Sun, C., H. Geng, N. Zhang, X. Teng, and L. Ji, "Viscous feature of Sb-Bi alloy under magnetic field," Materials Letters, Vol. 62, 73-76, 2008.
doi:10.1016/j.matlet.2007.04.070

24. Ghauri, S. and M. Ansari, "Increase of water viscosity under the influence of magnetic field," Journal of Applied Physics, Vol. 100, 066101-066102, 2006.
doi:10.1063/1.2347702

25. Yasuda, H., I. Ohnaka, O. Kawakami, K. Ueno, and K. Kishio, "Effect of magnetic field on solidification in Cu-Pb monotectic alloys," ISIJ Inter., Vol. 43, 942-949, 2003.
doi:10.2355/isijinternational.43.942

26. Davidson, P. A., An introduction to Magnetohydrodynamics, Cambridge University Press, 2001.
doi:10.1017/CBO9780511626333

27. Butter, K., P. Bomans, P. M. Frederik, G. J. Vroege, and A. P. Philipse, "Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy," Nat. Mater., Vol. 2, 88-91, 2003.
doi:10.1038/nmat811

28. Fang, W., Z. He, X. Xu, Z. Mao, and H. Shen, "Magnetic-field-induced chain-like assembly structures of Fe3O4 nanoparticles," EPL, Vol. 77, 68004, 2007.
doi:10.1209/0295-5075/77/68004


© Copyright 2010 EMW Publishing. All Rights Reserved