PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 263-284

ELECTROMAGNETIC MODELING OF OUTCOUPLING EFFICIENCY AND LIGHT EMISSION IN NEAR-INFRARED QUANTUM DOT LIGHT EMITTING DEVICES

By A. E. Farghal, S. M. H. Wageh, and A. E.-S. Abou El-Azm

Full Article PDF (351 KB)

Abstract:
We report an analytical exciton emission model based on Green function for simulating the radiation characteristics of near-infrared Quantum Dot-light emitting devices (QD-LEDs). In this model the internally emitted light can be classified into the following modes: substrate, indium tin oxide (ITO)/organic waveguided, surface plasmonic modes, and external emitted mode. We investigate the influence of the thickness of different layers and the distance between the emitting center and the cathode metal on the emitted power distribution among these modes. In addition, we study the angular radiation profile for the externally emitted radiation and substrate waveguided mode in comparison with lambartian radiation profile. We show the change of the thickness of the different layers, and the positions of the emitting centers are critical to the optical performance of the device. The optimization of optical performance through device geometry increases the outcoupling efficiency more than five times.

Citation:
A. E. Farghal, S. M. H. Wageh, and A. E.-S. Abou El-Azm, "Electromagnetic Modeling of Outcoupling Efficiency and Light Emission in Near-Infrared Quantum Dot Light Emitting Devices," Progress In Electromagnetics Research B, Vol. 24, 263-284, 2010.
doi:10.2528/PIERB10070206

References:
1. Konstantatos, G., C. Huang, L. Levina, Z. Lu, and E. H. Sargent, "Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots," Advanced Functional Materials, Vol. 15, No. 11, 1865-1869, 2005.
doi:10.1002/adfm.200500379

2. Stok, A. and E. H. Sargent, "Lighting the local area: Optical code-division multiple access and quality of service provisioning," IEEE Network, Vol. 14, No. 6, 42-46, 2000.
doi:10.1109/65.885669

3. Steckel, J. S., S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, "1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device," Advanced Materials, Vol. 15, No. 21, 1862-1866, 2003.
doi:10.1002/adma.200305449

4. Tessler, N., V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light-emitting diodes," Science, Vol. 295, No. 5599, 1506-1508, 2002.
doi:10.1126/science.1068153

5. Bakueva, L. and S. Musikhin, "Size-tunable infrared (1000--1600nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer," Appl. Phys. Lett., Vol. 82, No. 17, 2895-2897, 2003.
doi:10.1063/1.1570940

6. McDonald, S. A., P. W. Cyr, L. Levina, and E. H. Sargent, "Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors," Appl. Phys. Lett., Vol. 85, No. 11, 2089-2091, 2004.
doi:10.1063/1.1792380

7. Liu, H. C., M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, "Quantum dot infrared photodetectors," Appl. Phys. Lett., Vol. 78, No. 1, 79-81, 2001.
doi:10.1063/1.1337649

8. Böberl, M., M. V. Kovalenko, G. Pillwein, G. Brunthaler, and W. Heiss, "Quantum dot nanocolumn photodetectors for light detection in the infrared," Appl. Phys. Lett., Vol. 92, No. 26, 261113, 2008.
doi:10.1063/1.2949084

9. McDonald, S. A., G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nature Materials, Vol. 4, 138-142, 2005.
doi:10.1038/nmat1299

10. Klem, E. J. D., L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200--1700nm," Appl. Phys. Lett., Vol. 87, 053101, 2005.
doi:10.1063/1.2001737

11. Huynh, W. U., J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science, Vol. 295, No. 5564, 2425-2427, 2002.
doi:10.1126/science.1069156

12. Klimov, V. I., A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science, Vol. 290, No. 5490, 314-317, 2000.
doi:10.1126/science.290.5490.314

13. Schaller, R. D., M. A. Petruska, and V. I. Klimov, "Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals," J. Phys. Chem. B, Vol. 107, No. 50, 13765-13768, 2003.
doi:10.1021/jp0311660

14. Lin, Y.-M. and M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, Vol. 68, No. 7, 075304, 2003.
doi:10.1103/PhysRevB.68.075304

15. Gaponik, N., I. L. Radtchenko, M. R. Gerstenberger, Y. A. Fedutik, G. B. Sukhorukov, and A. L. Rogach, "Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals," Nano Letters, Vol. 3, No. 3, 369-372, 2003.
doi:10.1021/nl0259333

16. Bourdakos, K. N., D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, "Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device," Appl. Phys. Lett., Vol. 92, No. 15, 153311, 2008.
doi:10.1063/1.2909589

17. Zhao, J. L., J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I.-K. Ding, J. D. Luo, B. Q. Chen, A. K.-Y. Jen, and D. S. Ginger, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano Letters, Vol. 6, No. 3, 463-467, 2006.
doi:10.1021/nl052417e

18. Lu, M.-H. and J. C. Sturn, "External coupling efficiency in planar organic light-emitting devices," Appl. Phys. Lett., Vol. 78, No. 13, 1927-1929, 2001.
doi:10.1063/1.1357207

19. Du, H., C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, "Optical properties of colloidal PbSe nanocrystals," Nano Letters, Vol. 2, No. 11, 1321-1324, 2002.
doi:10.1021/nl025785g

20. Bakueva, L., G. Konstantatos, L. Levina, S. Musikhin, and E. H. Sargent, "Luminescence from processible quantum dot-polymer light emitters 1100--1600 nm: Tailoring spectral width and shape," Appl. Phys. Lett., Vol. 84, No. 18, 3459-3461, 2004.
doi:10.1063/1.1737072

21. Overhof, H. and U. Rossler, "Electronic structure of PbS, PbSe, and PbTe," Phys. Stat. Sol., Vol. 37, No. 2, 691-698, 2006.

22. Chang, T.-W. F., A. Maria, P. W. Cyr, V. Sukhovatkin, L. Levina, and E. H. Sargent, "High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films," Synthetic Metals, Vol. 148, No. 3, 257-261, 2005.
doi:10.1016/j.synthmet.2004.10.003

23. Wehrenberg, B. L., C. Wang, and P. Guyot-Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B, Vol. 106, No. 41, 10634-10640, 2002.
doi:10.1021/jp021187e

24. Kim, K.-H., J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, "Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern," Appl. Phys. Lett., Vol. 89, No. 19, 191120, 2006.
doi:10.1063/1.2387862

25. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991.

26. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," Advances in Chemical Physics, 1-65, S. A. R. I. Prigogine (ed.), Wiley, 1978.

27. Celebi, K., T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Optics Express, Vol. 15, No. 4, 1762-1772, 2007.
doi:10.1364/OE.15.001762

28. Hartman, R. L., S. M. Cohen, and P. T. Leung, "A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces," J. Chem. Phys., Vol. 110, No. 4, 2189-2194, 1999.
doi:10.1063/1.477830

29. Li, L.-W., P.-S. Kooi, M.-S. Leong, and T.-S. Yeo, "Electromagnetic dyadic Green's function in spherically multilayered media," IEEE Trans. on Microwave Theory and Techniques, Vol. 42, No. 12, 2302-2310, 1994.
doi:10.1109/22.339756

30. Lee, C.-C., M.-Y. Chang, Y.-D. Jong, T.-W. Huang, C.-S. Chu, and Y. Chang, "Numerical simulation of electrical and optical characteristicsof multilayer organic light-emitting devices," Jpn. J. Appl. Phys., Vol. 43, No. 11A, 7560-7565, 2004.
doi:10.1143/JJAP.43.7560

31. Himcinschi, C., N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition," Appl. Phys. A, Vol. 80, No. 3, 551-555, 2005.
doi:10.1007/s00339-004-2973-7

32., Handbook of Optical Constants of Solids, E. D. Palik (ed.), Academic, New York, 1985.

33. Seth Coe, W.-K. W., M. Bawendi, and V. Bulović, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature Materials, Vol. 420, 800-803, 2002.

34. Patel, N. K., S. Cinà, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Select. Topics Quantum Electron., Vol. 8, No. 2, 346-361, 2002.
doi:10.1109/2944.999190

35. Lu, M.-H. and J. C. Sturmb, "Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment," J. Appl. Phys., Vol. 91, No. 2, 595-604, 2002.
doi:10.1063/1.1425448

36. Kim, H., C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708

37. Sun, Q. J., Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, "Multicoloured light-emitting diodes based on quantum dots," Nature Photonics, Vol. 1, 717-722, 2007.
doi:10.1038/nphoton.2007.226


© Copyright 2010 EMW Publishing. All Rights Reserved