Vol. 27
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-12-02
Magnetic Field and Current Are Zero Inside Ideal Conductors
By
Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011
Abstract
We prove a theorem on the magnetic energy minimum in a system of perfect, or ideal, conductors. It is analogous to Thomson's theorem on the equilibrium electric field and charge distribution in a system of conductors. We first prove Thomson's theorem using a variational principle. Our new theorem is then derived by similar methods. We find that magnetic energy is minimized when the current distribution is a surface current density with zero interior magnetic field; perfect conductors are perfectly diamagnetic. The results agree with currents in superconductors being confined near the surface. The theorem implies a generalized force that expels current and magnetic field from the interior of a conductor that loses its resistivity. Examples of solutions that obey the theorem are presented.
Citation
Miguel C. N. Fiolhais, Hanno Essén, Constanca Providencia, and Arne B. Nordmark, "Magnetic Field and Current Are Zero Inside Ideal Conductors," Progress In Electromagnetics Research B, Vol. 27, 187-212, 2011.
doi:10.2528/PIERB10082701
References

1. Carr, Jr., W. J., "Macroscopic theory of superconductors," Phys. Rev. B, Vol. 23, 3208-3212, 1981.
doi:10.1103/PhysRevB.23.3208        Google Scholar

2. Jackson, J. D., Classical Electrodynamics, 3 Ed., John Wiley & Sons, New York, 1999.

3. Coulson, C. A., Electricity, 3 Ed., Oliver and Boyd, Edinburgh, 1953.

4. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, 2 Ed., Dover, New York, 2005.

5. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2 Ed., Butterworth-Heinemann, Oxford, 1984.

6. Bakhoum, E. G., "Proof of Thomson's theorem of electrostatics," J. Electrostatics, Vol. 66, 561-563, 2008.
doi:10.1016/j.elstat.2008.06.002        Google Scholar

7. Kovetz, A., Electromagnetic Theory, Oxford University Press, Oxford, 2000.

8. Sancho, M., J. L. Sebastián, and V. Giner, "Distribution of charges on conductors and Thomson's theorem," Eng. Sci. Educ. J., Vol. 10, 26-30, 2001.
doi:10.1049/esej:20010104        Google Scholar

9. Donolato, C., "An application of Thomson's theorem to the determination of induced charge density," Eur. J. Phys., Vol. 24, L1-L4, 2003.
doi:10.1088/0143-0807/24/3/101        Google Scholar

10. Brito, L. and M. Fiolhais, "Energetics of charge distributions," Eur. J. Phys., Vol. 23, 427-431, 2002.
doi:10.1088/0143-0807/23/4/306        Google Scholar

11. Sancho, M., J. L. Sebastián, S. Muñoz, and J. M. Miranda, "Computational method in electrostatics based on monte carlo energy minimization," IEE Proc., Sci. Meas. Technol., Vol. 148, 121-124, 2009.
doi:10.1049/ip-smt:20010449        Google Scholar

12. Karlsson, P. W., "Inductance inequalities for ideal conductors," Arch. f. Elektrotech., Vol. 67, 29-33, 1984.
doi:10.1007/BF01574728        Google Scholar

13. Badía-Majós, A., "Understanding stable levitation of super-conductors from intermediate electromagnetics," Am. J. Phys., Vol. 74, 1136-1142, 2006.
doi:10.1119/1.2338548        Google Scholar

14. McAllister, I. W., "Surface current density K: An introduction," IEEE Trans. Elect. Insul., Vol. 26, 416-417, 1991.
doi:10.1109/14.85112        Google Scholar

15. Dolecek, R. L. and J. de Launay, "Conservation of flux by a superconducting torus," Phys. Rev., Vol. 78, 58-60, 1950.
doi:10.1103/PhysRev.78.58        Google Scholar

16. Hehl, F. W. and Y. N. Obukhov, "Dimensions and units in electrodynamics," Gen. Relativ. Gravit., Vol. 37, 733-749, USA, 2005.
doi:10.1007/s10714-005-0059-2        Google Scholar

17. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 4 Ed., Pergamon, Oxford, 1975.

18. London, F. and H. London, "The electromagnetic equations of the supraconductor," Proc. Roy. Soc. A, Vol. 149, 71-88, 1935.
doi:10.1098/rspa.1935.0048        Google Scholar

19. Badía-Majós, A., J. F. Cariñena, and C. López "Geometric treatment of electromagnetic phenomena in conducting materials: variational principles," J. Phys. A: Math. Gen., Vol. 39, 14699-14726, 2006.
doi:10.1088/0305-4470/39/47/013        Google Scholar

20. Woltjer, L., "A theorem on force-free magnetic fields," Proc. Nat. Acad. Sci., Vol. 44, 489-491, 1958.
doi:10.1073/pnas.44.6.489        Google Scholar

21. Griffiths, D. J., Introduction to Electrodynamics, 3 Ed., Prentice Hall, New Jersey, 1999.

22. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei eintritt der Supraleitfähigkeit," Naturwiss., Vol. 21, 787-788, 1933.
doi:10.1007/BF01504252        Google Scholar

23. Hirsch, J. E., "Charge expulsion, spin Meissner effect, and charge inhomogeneity in superconductors," J. Supercond. Nov. Magn., Vol. 22, 131-139, 2009.
doi:10.1007/s10948-008-0381-5        Google Scholar

24. Forrest, A. M., "Meissner and Ochsenfeld revisited," Eur. J. Phys., Vol. 4, 117-120, 1983, Comments on and translation into English of Meissner and Ochsenfeld.
doi:10.1088/0143-0807/4/2/011        Google Scholar

25. Alfvén, H. and C.-G. Fälthammar, Cosmical Electrodynamics, 2 Ed., Oxford University Press, Oxford, 1963.

26. Essén, H, "From least action in electrodynamics to magnetomechanical energy," Eur. J. Phys., Vol. 30, 515-539, 2009.
doi:10.1088/0143-0807/30/3/009        Google Scholar

27. Gorter, C. J. and H. Casimir, "On supraconductivity I," Physica, Vol. 1, 306-320, 1934.
doi:10.1016/S0031-8914(34)90037-9        Google Scholar

28. Essén, H., "Magnetic fields, rotating atoms, and the origin of diamagnetism," Phys. Scr., Vol. 40, 761-767, 1989.
doi:10.1088/0031-8949/40/6/012        Google Scholar

29. Essén, H., "Darwin magnetic interaction energy and its macroscopic consequences," Phys. Rev. E, Vol. 53, 5228-5239, 1996.
doi:10.1103/PhysRevE.53.5228        Google Scholar

30. Essén, H., "Magnetic dynamics of simple collective modes in a two-sphere plasma model," Phys. of Plasmas, Vol. 12, 122101-1-7, 2005.        Google Scholar

31. Essén, H., "Electrodynamic model connecting superconductor response to magnetic field and to rotation," Eur. J. Phys., Vol. 26, 279-285, 2005.
doi:10.1088/0143-0807/26/2/007        Google Scholar

32. Greiner, W., Classical Electrodynamics, Springer, New York, 1998.
doi:10.1007/978-1-4612-0587-6

33. Fock, V., "Skineffekt in einem Ringe," Phys. Z. Sowjetunion, Vol. 1, 215-236, 1932.        Google Scholar

34. De Launay, J., "Electrodynamics of a superconducting torus,", Technical Report NRL-3441, Naval Research Lab, Washington DC, 1949.        Google Scholar

35. Carter, G. W., S. C. Loh, and C. Y. K. Po, "The magnetic field of systems of currents circulating in a conducting ring," Quart. Journ. Mech. and Applied Math., Vol. 18, 87-106, 1965.
doi:10.1093/qjmam/18.1.87        Google Scholar

36. Bhadra, D., "Field due to current in toroidal geometry," Rev. Sci. Instrum., Vol. 39, 1536-1546, 1968.
doi:10.1063/1.1683157        Google Scholar

37. Haas, H., "Das Magnetfeld eines gleichstromdurchflossenen Torus," Arch. f. Elektrotech., Vol. 58, 197-209, 1976.
doi:10.1007/BF01600116        Google Scholar

38. Belevitch, V. and J. Boersma, "Some electrical problems for a torus," Philips J. Res., Vol. 38, 79-137, 1983.        Google Scholar

39. Ivaska, V., V. Jonkus, and V. Palenskis, "Magnetic field distribution around a superconducting torus," Physica C, Vol. 319, 79-86, 1999.
doi:10.1016/S0921-4534(99)00279-8        Google Scholar

40. Zhilichev, Y. N., "Superconducting cylinder in a static transverse magnetic field," IEEE Trans. Appl. Supercond., Vol. 7, 3874-3879, 1997.
doi:10.1109/77.659441        Google Scholar

41. Matute, E. A., "On the superconducting sphere in an external magnetic field," Am. J. Phys., Vol. 67, 786-788, 1999.
doi:10.1119/1.19126        Google Scholar