PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 26 > pp. 361-382

RELIABLE SIMULATION-DRIVEN DESIGN OPTIMIZATION OF MICROWAVE STRUCTURES USING MANIFOLD MAPPING

By S. Koziel and D. Echeverría Ciaurri

Full Article PDF (357 KB)

Abstract:
A computationally efficient surrogate-based framework for reliable simulation-driven design optimization of microwave structures is described. The key component of our algorithm is manifold mapping, a response correction technique that aligns the coarse model (computationally cheap representation of the structure under consideration) with the accurate but CPU-intensive (fine) model of the optimized device. The parameters of the manifold mapping surrogate are explicitly calculated based on the fine model data accumulated during the optimization process. Also, manifold mapping does not use any extractable parameters, which makes it easy to implement. Robustness and excellent convergence properties of the proposed algorithm are demonstrated through the design of several microwave devices including microstrip filters and a planar antenna.

Citation:
S. Koziel and D. Echeverría Ciaurri, "Reliable Simulation-Driven Design Optimization of Microwave Structures Using Manifold Mapping," Progress In Electromagnetics Research B, Vol. 26, 361-382, 2010.
doi:10.2528/PIERB10090202

References:
1. Schantz, H., The Art and Science of Ultrawideband Antennas, Artech House, 2005.

2. Wu, K., "Substrate integrated circuits (SiCs) --- A new paradigm for future GHz and THz electronic and photonic systems," IEEE Circuits and Systems Society Newsletter, Vol. 3, No. 2, Apr. 2009.

3. Rizzoli, V., A. Costanzo, D. Masotti, and P. Spadoni, Circuit-level nonlinear/electromagnetic co-simulation of an entire microwave link, IEEE MTT-S Int. Microwave Symp. Dig., 813-816, Long Beach, CA, Jun. 2005.

4. Shin, S. and S. Kanamaluru, "Diplexer design using EM and circuit simulation techniques," IEEE Microwave Magazine, Vol. 8, No. 2, 77-82, Apr. 2007.
doi:10.1109/MMW.2007.335532

5. Snyder, R. V., "Practical aspects of microwave filter development," IEEE Microwave Magazine, Vol. 8, No. 2, 42-54, Apr. 2007.
doi:10.1109/MMW.2007.335528

6. Bandler, J. W., Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Søndergaard, "Space mapping: The state of the art," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 337-361, Jan. 004.
doi:10.1109/TMTT.2003.820904

7. Ismail, M. A., D. Smith, A. Panariello, Y. Wang, and M. Yu, "EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 386-392, Jan. 2004.
doi:10.1109/TMTT.2003.820900

8. Wu, K.-L., Y.-J. Zhao, J. Wang, and M. K. K. Cheng, "An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 393-402, Jan. 2004.
doi:10.1109/TMTT.2003.820901

9. Rayas-Sánchez, J. E., F. Lara-Rojo, and E. Martínez-Guerrero, "A linear inverse space mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 3, 960-968, Mar. 2005.
doi:10.1109/TMTT.2004.842482

10. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894

11. Dorica, M. and D. D. Giannacopoulos, "Response surface space mapping for electromagnetic optimization," IEEE Trans. Magn., Vol. 42, No. 4, 1123-1126, Apr. 2006.
doi:10.1109/TMAG.2006.872018

12. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 2153-2159, May 2006.
doi:10.1109/TMTT.2006.872811

13. Crevecoeur, G., L. Dupre, and R. van de Walle, "Space mapping optimization of the magnetic circuit of electrical machines including local material degradation," IEEE Trans. Magn., Vol. 43, No. 6, 2609-2611, Jun. 2007.
doi:10.1109/TMAG.2007.893409

14. Pantoja, M. F., P. Meincke, and A. R. Bretones, "A hybrid genetic-algorithm space-mapping tool for the optimization of antennas," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 3, Part 1, 777-781, Mar. 2007.
doi:10.1109/TAP.2007.891556

15. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Space mapping,", Vol. 9, No. 6, 105-122, Dec. 2008.

16. Crevecoeur, G., P. Sergeant, L. Dupre, and R. van de Walle, "Two-level response and parameter mapping optimization for magnetic shielding," IEEE Trans. Magn., Vol. 44, No. 2, 301-308, Feb. 2008.
doi:10.1109/TMAG.2007.911661

17. Sergeant, P., R. V. Sabariego, G. Crevecoeur, L. Dupre, and C. Geuzaine, "Analysis of perforated magnetic shields for electric power applications," IET Electric Power Applications, Vol. 3, No. 2, 123-132, Mar. 2009.
doi:10.1049/iet-epa:20080203

18. Rautio, J. C., RF design closure --- Companion modeling and tuning methods, IEEE MTT IMS Workshop: Microwave Component Design Using Space Mapping Technology, San Francisco, CA, 2006.

19. Swanson, D. G. and R. J. Wenzel, Fast analysis and optimization of combline filters using FEM, IEEE MTT-S IMS Digest, 1159-1162, Boston, MA, Jul. 2001.

20. Rautio, J. C., "EM-component-based design of planar circuits," IEEE Microwave Magazine, Vol. 8, No. 4, 79-90, Aug. 2007.
doi:10.1109/MMW.2007.383305

21. Swanson, D. and G. Macchiarella, "Microwave filter design by synthesis and optimization," IEEE Microwave Magazine, Vol. 8, No. 2, 55-69, Apr. 007.
doi:10.1109/MMW.2007.335529

22. Rautio, J. C., Perfectly calibrated internal ports in EM analysis of planar circuits, IEEE MTT-S Int. Microwave Symp. Dig., 1373-1376, Atlanta, GA, Jun. 2008.

23. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 478-486, 2009.
doi:10.1109/TMTT.2008.2011243

24. Koziel, S., Efficient optimization of microwave circuits using shape-preserving response prediction, IEEE MTT-S Int. Microwave Symp. Dig, 1569-1572, Boston, MA, 2009.

25. Koziel, S., J. W. Bandler, and K. Madsen, "Quality assessment of coarse models and surrogates for space mapping optimization," Optimization and Engineering, Vol. 9, No. 4, 375-391, 2008.
doi:10.1007/s11081-007-9032-0

26. Meng, J., S. Koziel, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, Tuning space mapping: A novel technique for engineering design optimization, IEEE MTT-S Int. Microwave Symp. Dig., 991-994, Atlanta, GA, Jun. 2008.

27. Koziel, S., J. Meng, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Accelerated microwave design optimization with tuning space mapping," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 383-394, Feb. 2009.
doi:10.1109/TMTT.2008.2011313

28. Cheng, Q. S., J. W. Bandler, and S. Koziel, "Space mapping design framework exploiting tuning elements," IEEE Trans. Microwave Theory and Tech., Vol. 58, No. 1, 136-144, 2010.
doi:10.1109/TMTT.2009.2036395

29. Echeverría, D. and P. W. Hemker, "Space mapping and defect correction," CMAM Int. Mathematical Journal Computational Methods in Applied Mathematics, Vol. 5, No. 2, 107-136, 2005.

30. Hemker, P. W. and D. Echeverría, "A trust-region strategy for manifold mapping optimization," JCP Journal of Computational Physics, Vol. 224, No. 1, 464-475, 2007.
doi:10.1016/j.jcp.2007.04.003

31. Alexandrov, N. M. and R. M. Lewis, "An overview of first-order model management for engineering optimization," Optimization Eng., Vol. 2, No. 4, 413-430, Dec. 2001.
doi:10.1023/A:1016042505922

32. Koziel, S., Surrogate-based optimization of microwave structures using space mapping and kriging, European Microwave Conference, 1062-1065, Rome, Italy, Sep. 28--Oct. 2, 2009.

33. Beachkofski, B. and R. Grandhi, "Improved distributed hypercube sampling," American Institute of Aeronautics and Astronautics, 2002-1274, 2002.

34. Simpson, T. W., J. Peplinski, P. N. Koch, and J. K. Allen, "Metamodels for computer-based engineering design: Survey and recommendations," Engineering with Computers, Vol. 17, No. 2, 129-150, Jul. 2001.
doi:10.1007/PL00007198

35. Simpson, T. W., T. M. Maurey, J. J. Korte, and F. Mistree, "Kriging models for global approximation in simulation-based multidisciplinary design optimization," American Institute of Aeronautics and Astronautic, Vol. 39, No. 12, 2233-2241, Dec. 2001.

36. Yang, Y., S. M. Hu, and R. S. Chen, "A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits," Microwave Opt. Technol. Lett., Vol. 44, No. 3, 296-299, Feb. 2005.
doi:10.1002/mop.20615

37. Meng, J. and L. Xia, "Support-vector regression model for millimeter wave transition," Int. J. Infrared and Milimeter Waves, Vol. 28, No. 5, 413-421, May 2007.
doi:10.1007/s10762-007-9212-1

38. Lin, Y. F., C. H. Chen, K. Y. Chen, H. M. Chen, and K. L. Wong, "A miniature dual-mode bandpass filter using Al2O3 substrate," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 580-582, Aug. 2007.
doi:10.1109/LMWC.2007.901766

39. FEKO ®, User's Manual, Suite 5.4, 2008, EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa.

40. Agilent ADS, Version 2008, Agilent Technologies, 1400 Fountain-grove Parkway, Santa Rosa, CA 95403-1799, 2008.

41. Hsieh, M. Y. and S. M.Wang, "Compact and wideband microstrip bandstop filter," IEEE Microwave and Wireless Component Lett., Vol. 15, No. 7, 472-474, Jul. 2005.
doi:10.1109/LMWC.2005.851572

42. Sun, S. and L. Zhu, "Wideband microstrip ring resonator bandpass filters under multiple resonances," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 10, 2176-2182, Oct. 2007.

43. Spence, T. G. and D. H. Werner, "A novel miniature broadband/multiband antenna based on an end-loaded planar open-sleeve dipole," IEEE Trans. Antennas Propag., Vol. 54, No. 12, 3614-3620, Dec. 2006.
doi:10.1109/TAP.2006.886493

44. CST Microwave Studio, Version 2009, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2009.

45. Lophaven, S. N., H. B. Nielsen, and J. Søndergaard, DACE: A Matlab kriging toolbox, Technical University of Denmark, 2002.

46. Echeverría, D. and P. W. Hemker, "Manifold mapping: A two-level optimization technique," Computing and Visualization in Science, No. 11, 193-206, 2008.
doi:10.1007/s00791-008-0096-y

47. Echeverría, D., "Two new variants of the manifold-mapping technique," COMPEL the International Journal for Computation and Mathematics in Electrical Engineering, Vol. 26, No. 2, 334-344, 2007.
doi:10.1108/03321640710727692

48. Conn, A. R., N. Gould, and P. L. Toint, Trust-region Methods, MPS/SIAM Series on Optimization, SIAM, Philadelphia, 2007.

49. Kolda, T. G., R. M. Lewis, and V. Torczon, "Optimization by direct search: new perspectives on some classical and modern methods," SIAM Review, Vol. 45, No. 3, 385-482, 2003.
doi:10.1137/S003614450242889

50. MatlabTM, Version 7.6, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved