Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 183-199


By Y.-F. Chau, Z.-H. Jiang, H.-Y. Li, G.-M. Lin, F.-L. Wu, and W.-H. Lin

Full Article PDF (461 KB)

We investigate the localized surface plasmon resonances (LSPR) of a pair of dielectric-core/silver-shell nanospheres, with and without a silver nanobar connecting them, for different values of the permittivity of the dielectric core, using the finite element method. Results show that the structure of a pair of core shells with a nanobar possesses a distinct blue-shifted behavior that can be manipulated from near infrared to visible light. The near field intensity can be enhanced by several orders of magnitude and the working wavelengths depend on the shell thickness, dielectric medium in hollow metallic shell and the diameter of the nanobar. In addition, three or more pairs of nanospherical chain waveguides have also been investigated in our simulations.

Y.-F. Chau, Z.-H. Jiang, H.-Y. Li, G.-M. Lin, F.-L. Wu, and W.-H. Lin, "Localized Resonance of Composite Core-Shell Nanospheres, Nanobars and Nanospherical Chains," Progress In Electromagnetics Research B, Vol. 28, 183-199, 2011.

1. Wang, F. and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett., Vol. 97, 206806, 2006.

2. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, 165-170, 2008.

3. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189-193, 2006.

4. El-Sayed, I. H., X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer ," Nano Lett., Vol. 5, 829-834, 2005.

5. Haes, A. J., S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B, Vol. 108, 6961-6968, 2004.

6. Loo, C. A., A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett., Vol. 5, 709-711, 2005.

7. Mirin, N. A., K. Bao, and P. Nordlander, "Fano resonances in plasmonic nanoparticle aggregates," J. Phys. Chem. A, Vol. 113, 4028-4034, 2009.

8. Andrew, A. and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science, Vol. 306, 1002-1005, 2004.

9. Okamoto, K., I. NiKi, A. Scherer, Y. Narukawa, and T. Mukai, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mater., Vol. 3, 601-605, 2004.

10. Politano, A. and G. Chiarello, "Tuning the lifetime of the surface plasmon upon sputtering," Phys. Status Solidi-Rapid Res. Lett., Vol. 3, No. 5, 136-138, 2009.

11. Pinchuk, A. and U. Kreibig, "Interface decay channel of particle surface plasmon resonance," New J. Phys., Vol. 5, 151.1-151.15, 2003.

12. Ishida, H. and A. Liebsh, "Lifetime of surface plasmons of simple metals: Volume versus surface contributions," Phys. Rev. B, Vol. 54, 14127-1996.

13. Yuan, Z. and S. Gao, "Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model," Surf. Sci., Vol. 602, 460-464, 2008.

14. Nie, S. and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced. Raman scattering," Science, Vol. 275, 1102-1106, 1997.

15. Sokolov, K., G. Chumanov, and T. Cotton, "Among Ag, Al and Au layers, the emission intensity of YAG: Ce thin-film phosphor by coating a silver," Anal. Chem., Vol. 70, 3898-3905, 1998.

16. Lassiter, J. B., J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Close encounters between two nanoshells," Nano Lett., Vol. 8, 1212-1218, 2008.

17. Chau, Y.-F., H.-H. Yeh, and D. P. Tsai, "Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair ," Appl. Opt., Vol. 47, 5557-5561, 2008.

18. Sun, Y. and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, Vol. 298, 2176-2179, 2002.

19. Nehl, C. L., H. Liao, and J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett., Vol. 6, 683-688, 2006.

20. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.

21. Talley, C. E., J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates," Nano Lett., Vol. 5, 1569-1574, 2005.

22. Sherry, L. J., S.-H. Chang, G. C. Schatz, R. P. V. Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett., Vol. 5, 2034-2038, 2005.

23. Oldenburg, S. J., R. D. Averitt, S. L. Westcoot, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett., Vol. 288, 243-247, 1998.

24. Lassiter, J. B., J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, "Nanoshells dimers and overlapped dimmers," Nano Lett., Vol. 8, 1212-1218, 2008.

25. Jain, P. K. and M. A. El-Sayed, "Scaling of plasmon coupling in nanoshells," Nano Lett., Vol. 7, 2854, 2007.

26. Brandl, D. W., C. Oubre, and P. Nordlander, "Plasmon hybridization in nanoshell dimmers," J. Chem. Phys., Vol. 123, 024701, 2005.

27. Tserkezis, C., G. Gantzounis, and N. Stefanou, "Collective plasmonic modes in ordered assemblies of metallic nanoshells," J. Phys.: Condens. Matter, Vol. 20, 075232, 2008.

28. Hu, Y., R. C. Fleming, and R. A. Drezek, "Optical properties of gold-silica-gold multilayer nanoshells," Opt. Express, Vol. 16, 19579-19591, 2009.

29. Averitt, R., D. Sarkar, and N. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth," Phys. Rev. Lett., Vol. 79, 4217-4220, 1997.

30. Chau, Y.-F., "Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair," Plasmonics,, Vol. 4, 253-2009.

31. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.

32. Zhang, R., S. Dods, and P. Catrysse, "FDTD approach for optical metallic material," Laser Focus World, Vol. 68, 2004 (www.laserfocusworld.com).

33. Veronis, G., R. W. Dutton, and S. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, No. 9, 2005.

34. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 22, 4493-4499, 1983.

35. Ordal, M. A., M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 24, 1099-1120, 1985.

36. Gresho, P. M. and R. L. Sani, Incompressible Flow and Finite Element Method, Vol. 1 & 2, John Wiley and Sons, New York, 2000.

37. Monk, P., "Finite Element Methods for Maxwell'S Equations," Clarendon, Oxford, 2003, 85.

38. Okamoto, T., Near-field Optics and Surface Plasmon Polaritons, 99, S. Kawata (Ed.), Springer, Berlin, 2001.

39. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

40. Jain, P. K. and M. A. El-Sayed, "Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells," Nano Lett., Vol. 7, 2854-2858, 2007.

41. COMSOL Multiphysics 4.1 TM, http://www.comsol.com.

42. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures ," Science, Vol. 302, 419, 2003.

43. Teperik, T. V., V. V. Popov, and F. J. Garcia de Abajo, "Radiative decay of plasmons in a metallic nanoshell," Phys. Rev. B, Vol. 69, 155402, 2004.

44. Wang, H., D. W. Brandl, P. Nordlander, and N. J. Halas, "Tunable plasmonic nanostructures: From fundamental nanoscale optics to surface-enhanced spectroscopies," Acc. Chem. Res., Vol. 40, 53-62, 2007.

45. Ditlbacher, H., J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett., Vol. 81, 1762-1764, 2002.

46. Maier, S. A., P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater., Vol. 2, 229-232, 2003.

47. Cui, X. and D. Erni, "Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling," J. Opt. Soc. Am. A, Vol. 25, 1783-1789, 2008.

48. McMahon, J. M., S. K. Gray, and G. C. Schatz, "Calculating nonlocal optical properties of structures with arbitrary shape," Phys. Rev. B, Vol. 82, 035423, 2010.

49. Tserkezis, C., G. Gantzounis, and N. Stefanou, "Collective plasmonic modes in ordered assemblies of metallic nanoshells," J. Phys.: Condens. Matter, Vol. 20, 075232, 2008.

50. Yannopapas, V., "Non-local optical response of two-dimensional arrays of metallic nanoparticles," J. Phys.: Condens. Matter, Vol. 20, 325211, 2008.

© Copyright 2010 EMW Publishing. All Rights Reserved