Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 28 > pp. 75-94


By N. W. D. Le Marshall and A. Z. Tirkel

Full Article PDF (715 KB)

In this paper, we describe the design of a hybrid 24 GHz RADAR array for termite detection and imaging. The array uses MIMO techniques to provide transmit beam steering and null steering in conjunction with the Matrix Enhanced Matrix Pencil (MEMP), which provides direction of arrival processing. We describe the selection of our MIMO orthogonal codes and test their suitability. Simulated results are shown for our array design and MIMO processing in a range of applications MIMO enables us to produce flexible nulling and beam steering for our transmitter array as well as reducing multipath re┬░ections and narrowband interference. MIMO processing also produces large time savings, enabling longer, more accurate acquisitions which can increase SNR. Transmitter beam-forming, produces an SNR improvement of 18.2 dB and can be used to reject clutter by up to 20 dB. Flexible nulling can reject interferers still further.

N. W. D. Le Marshall and A. Z. Tirkel, "MIMO Radar Array for Termite Detection and Imaging," Progress In Electromagnetics Research B, Vol. 28, 75-94, 2011.

1. Caulfield, R. and P. Daly, An analysis of termite damage in Sydney and Melbourne, Hawthorn, Victoria, Australia, 2006.

2. Tirkel, A. Z., G. J. Sanderson, and R. J. Davies, Termite detection system, 6313643, June 11, 2001.

3. National telecommunications and information administration, Federal Standard 1037C, 1996.

4. Le Marshall, N. W. D. and A. Z. Tirkel, "Modified matrix pencil algorithm for termite detection with high resolution RADAR," Progress In Electromagmnetics Research C, Vol. 16, 51-67, September 2010.

5. Le Marshall, N. W. D., G. A. Rankin, and A. Z. Tirkel, "High resolution, wide coverage termite imager," PIERS Proceedings, 663-667, Xian, China, March 22-26, 2010.

6. Hua, Y., "Estimating two-dimensional frequencies by matrix enhancement and MEMP," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, September 1992.

7. Paulraj, A., R. Roy, and T. Kailath, "Estimation of signal parameters via rotational invariance technique --- ESPRIT," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, July 1989.

8. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276, March 1986.

9. Bachl, R., "The forward-backward averaging technique applied to TLS-ESPRIT processing ," IEEE Transactions on Signal Processing, Vol. 43, No. 11, 2691-2699, November 1995.

10. Le Marshall, N. W. D. and A. Z. Tirkel, "The application of the MEMP and beamforming to determine the presence of termites in situ ," IEEE Eurocon 2009 Proceedings, 1568-1572, 2009.

11. Le Marshall, N. W. D., G. A. Rankin, and A. Z. Tirkel, "Hybrid array for the detection and imaging of termites," Radio and Wireless Symposium 2010, 288-291, New Orleans, USA, 2010.

12. Brown, G., "Spartan-DSP takes aim at affordable DSP performanc," DSP Magazine, No. 3, 8-9, 2007.

13. Burintramart, S. and T. Sarkar, "Target localization in three dimensions," Advances in Direction of Arrival Estimation, Artech House, 2005.

14. Friedlander, B., Direction finding using an interpolated array, International Conference on Acoustics, Speech and Signal Processing, Vol. 5, 2951-2954, 1990.

15. Kyungjung, K., T. K. Sarkar, and M. S. Palma, "Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatterers," IEEE Transactions on Antennas And Propagation, Vol. 50, No. 5, 582-590, May 2002.

16. Donnet, B. J. and I. D. Longstaff, MIMO radar, techniques and opportunities, 3rd European Radar Conference, 2006, 112-115, Manchester, September 2006.

17. Everett, D., "Periodic digital sequences with pseudonoise properties," GEC Journal, Vol. 33, No. 3, 115-126, 1996.

18. Bak, P., C. Tang, and K. Wiesenfeld, "Self-organized criticality: An explanation of the 1/f noise," Physical Review Letters, Vol. 59, No. 4, 381-384, 1987.

19. Schottky, W., "Small-shot effect and flicker effect," Physical Review, Vol. 28, No. 6, 1331, 1926.

20. Dandekar, K. R., L. Hao, and X. Guanghan, "Experimental study of mutual coupling compensation in smart antenna applications," IEEE Transactions on Wireless Communications, Vol. 1, No. 3, 1536-1276, July 2002.

21. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, March 2004.

22. Boyd, M. and S. Grant, CVX: MATLAB software for disciplines convex programming, June 2009, http://stanford.edu/┬╗boyd/cvx.

23. Toh, K., M. J. Todd, and R. H. Tutunc, SDPT3 --- A MATLAB software for semidefinite-quadratic-linear programming, 2009, http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

24. Lebret, H. and S. Boyd, "Antenna array pattern synthesis via convex optimization," IEEE Transactions on Signal Processing, Vol. 45, No. 3, 526-532, March 1997.

25. Albagory, Y. A., M. Dessouky, and H. Sharshar, "An approach for low sidelobe beamforming in uniform concentric circular arrays," Wireless Personal Communications, Vol. 43, No. 4, 1363-1368, June 2007.

© Copyright 2010 EMW Publishing. All Rights Reserved